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Abstract
Genetic Algorithms (GAs) are emerging as powerful alternatives to traditional
optimization methods which are too restrictive and CPU intensive.  The field of
chemical engineering offers challenging optimization and search problems. We
show that, apart from being able to efficiently handle highly nonlinear,
multimodal and nonlinear objective functions, GAs can also handle cases where
the objective function is not clearly defined. Three case studies are presented to
illustrate the effectiveness of GAs in solving complex optimization problems.
The FORTRAN code along with the templates for the case studies can be
obtained from the authors.
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10.1 Introduction
Genetic Algorithms (GAs) are emerging as powerful alternatives to traditional
optimization methods which are too restrictive and CPU intensive. Genetic
Algorithms (GAs) accomplish the task of optimization by starting with a random
"population" of values for the parameters of an optimization problem, and
thereafter producing new "generations" of improved values that combine the best
"parts" of values from previous populations.

The field of chemical engineering offers challenging optimization and search
problems. In this paper we use GAs to solve representative problems in design
and control of chemical processes and to save a complex problem in transport
phenomena In the light of some unique problems encountered in chemical
engineering applications the following points summarize the advantages of using
GAs to solve them:

• As a GA proceeds randomly (yet systematically) in its search, it does
not require smoothness, derivability, continuity etc. in the objective
function.  The only requirement is that for a set of values for the
optimization parameters, one must assign a fitness value.  This feature
makes it possible to solve complex optimization/search problems where
the concept of an objective function is itself fuzzy and is more
qualitative than quantitative.

• Through computer experimentation and some heuristic analysis GAs
have been found to arrive at or close to the global optimum of an
objective function.

• GAs can efficiently handle highly nonlinear and noisy objective
functions as encountered in stochastic processes where traditional
gradient based methods are inefficient.

• GAs are amenable to parallel processing.  Unlike in gradient search
algorithms, in GAs the objective function evaluation for one parameter
set is independent of that for all others in the same generation. This
facilitates the use of parallel computers for the search procedure.

We refer the reader to standard literature (Goldberg, 1989, Davis, 1991) for details
of the theory and implementation of GAs. Here we discuss three case studies
which represent a cross section of chemical engineering applications. The
FORTRAN software and manual can be obtained from the authors. Parameters of
GAs employed in the three case studies are grouped at the end of the third case
study in Table. 10.4.

10.2 Case Study 1: Best Controller Synthesis using Qualitative
Criteria
In this section we demonstrate the use of GAs to accomplish controller design
task with quantitative goals to be accomplished. The goals are defined by
production engineers and operators. First, we illustrate our methodology on a
textbook example and then solve the linear controller design problem for a more
complex nonlinear multi-input multi-output (MIMO) plant.



3

10.2.1 A Textbook Example
Controller:

The following example illustrates the use of GAs for qualitative optimization:

Plant:

P(s) = 1

(s +1)(s + 2)

Controller:

C(s) = Kc (1+ 1

τ1s
+ τ Ds)

Problem:
Find the values of Kc, τ1 and τD so that the response of the closed loop for a
step change in the set-point has the following qualitative features:

• it has fast rise;
• it has smooth rise;
• it has a stable response.

The optimization procedure is initialized by ten randomly generated sets of values
for Kc, τ1 and τD in the intervals [0, 10], [0, 10] and [0, 10], respectively. This
set of parameters is the first generation.  Using these values, closed loop
simulations are conducted and the responses are ranked by the designer/operator,
who decides the ranking by assigning a numerical value to each response. These
fitness values do not correspond to integral square error (ISE) or any quantitative
characteristic of the responses but they reflect the quality of the responses as seen
by the expert with the above mentioned qualitative goals in mind. In the absence
of such a fitness value only a mere ranking is enough for the GA to proceed, but
convergence might be slow. Once the rankings and/or fitness values are assigned,
the GA produces the parameter set values corresponding to the second generation
and the above evaluation procedure is repeated. In this example problem runs up
to ten generations were performed. Figures 10.1.1 through 10.10.10 give the
responses of the dosed loop to step changes in the set-point. These figures are
arranged in their decreasing order of fitness in each generation. As we note from
the figures, the GA has managed to recognize our qualitative objective and is
giving more weight to those candidates (in the parameter set) that have desirable
features thereby successively improving the responses.
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For comparison purposes, the optimal solution for this problem (according to the
internal model control (IMC) principle) is

Kc = 10  (ideally  ∞)     τ1 = 1.5    τD = 0.333

and the corresponding step-change response is shown in Figure 10.11.

Figure 10.11 Best linear controller synthesis for a nonlinear plant.

Chien and Ogunnaike (1992) give details of the high-purity distillation column
we attempt to control. For control purposes, this is a two-input (y1, y2) two-
output (u1, u2) dynamical system. The open loop responses to various step
changes in the inputs indicate that the system is highly nonlinear. The controller
structure comprises two proportional-integral (PI) loops as indicated in Figure
10.12. kc1,τl,1,kc2 and τI,2 are the parameters to be tuned. We follow the steps
exactly as outlined in the previous example to arrive at the best PI settings. The
set-point changes in the simulations are [0, 0] → [0.05, 0]. In many plant
operations, set point changes are known beforehand (e.g., in startup, shutdown,
etc.) so the optimal linear controller can be tuned using all those set-point
changes in the simulations. The criteria used to evaluate controller fitness were:

• fast rise;
• smooth rise;
• stable responses with less oscillations.
• realizable control actions (both move sizes and move velocities).

Figures 10.13.1 through 10.13.10 show the simulations for the first generation
controller performances. As one can imagine, this set has a wide range of random
controller settings and performances. Figures 10.14.1 through 10.14.10 give the
performances of the controller settings in the tenth generation. The best setting of
this set is shown in Figure 10.14.1 which shows an improvement in performance
over the best setting of the first generation shown by Figure 10.13.1. Also,
unlike the first generation performances the tenth generation settings give more
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stable and good responses which satisfy the qualitative criteria showing that the
GA is converging toward better and better settings.
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Figure. 12. The Closed loop using Linear MlMO Controller. 
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This example illustrates that GAs can successfully converge to controller settings
to meet qualitative goals. An advantage of this technique is that in deciding which
is the best response the experience of the operator or the engineer is used. This
allows us to incorporate qualitative criteria which cannot be captured by
quantitative measures like ISE, percent overshoot, etc. Also, in our study we
found that this technique is robust in the sense that some (but inevitable) lack of
consistency in fitness assignments is tolerable.

10.3 Case Study 2: Optimization of back mix reactors in series
In this section we examine the classic problem of optimally designing a
continuously stirred tank reactor (CSTR) train. In the past this problem has been
studied by various researchers (Szèpe and Levenspiel (1964), Wood and Stevens
(1964), Luss (1965), Crooks (1966) and Edgar and Himmelblau (1988)). In a
train of four CSTRs the problem is to design CSTR volumes to achieve
maximum conversion. The sum of the individual CSTR volumes is constrained
by a prespecified value. This problem is successfully solved for an arbitrary order,
irreversible, single reaction power law kinetics by previous researchers. For
comparison purposes, we solve the same problem by a GA. The reaction

A → B r = kAn

takes place under isothermal conditions in a series of four CSTRs whose
dynamics are given by

d(Vici )

dt
= Fci−1 − Fci − riVi , i = 1,...,4 (10.1)

The L.H.S. of the above equation is set to zero and the exit concentrations ci, i =
1,...,4, of the four CSTRs are solely determined by inlet flow rate F, reaction
constraint k and feed concentration co. Parameter values and variable
nomenclature are given in Table 10.1.  Since GAs are insensitive to the analytic
properties of the objective function, they can handle any general kinetic
expression. Here a GA is used as a function optimizer to solve the following:

min

V1,...,V4

c4[ ]

subject to

V1 + V2 + V3 + V4 = 20m3

In each fitness evaluation, the routine FZERO (Kahaner, Moler and Nash, 1988)
is used to solve for the steady state algebraic equation yielding c4 and the fitness
is set equal to -c4. When the constraints are violated the fitness is set equal to
that of the minimum fitness encountered in that generation. Figure 10.15 shows
the evolution of the solution. The fact that the average population minima
approaches that of the best member in each population indicates that the



21

minimum is indeed global.  Table 10.2 shows a comparison between this study
and that of Edgar and Himmelblau (1988).

In gradient based solution of this problem, as c4 cannot be solved explicitly as a
function of co, c4 is held constant and co is maximized w.r.t. Vi, i = 1, ..., 4 in

each cycle. If the maximum co does not match with 20 kgmol/m3, c4 is changed
using linear interpolation and the optimization is done again. This procedure is
continued until co matches the given inlet concentration of 20 kgmol/m3. To
demonstrate the complexity of this technique a sequential quadratic programming
(SQP) technique (Zhou and Tits, 1989) was used to arrive at optimal Vis for c4 =

0.3961 kgmol/m3 and 1190 function evaluations were needed to converge to the
maximum inlet concentration of 20 kgmol/m3 (see Figure 10.16 for the
convergence profile). Obviously many more function evaluations are needed if we
start from an arbitrary initial value of c4 and change c4 after each cycle. Clearly
this is a very cumbersome method.
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Symbol meaning value

F feedrate 71 m3/hr
Vi, i = 1,2, 3, 4 volume of ith reactor variable

ci ,i = 1,2,3,4 concentration of A in ith CSTR variable

co concentration of species A  in the feed
to the first reactor

20 kgmol/m3

ri, i = 1,2,3,4 rate of dissipation of A in CSTR i = kci
n

 n reaction order 2.5
 k reaction constant 0.00625

m3

kgmol











1.5

s−1

Table. 10.1. Parameter values and nomenclature for the CSTR train.

Variable value at the
minimum

This Study Edgar and  Himmelblau
(1988)

c4 0.39627 kgmol/m3 0.3961 kgmol/m3

V1 2.234m3 2.242m3

V2 3.698m3 3.884m3

V3 6.163m3 5.849m3

V4 7.905m3 8.025m3

Table. 10.2. Results of Case Study 2

10.4 Case Study 3: Solution of lattice model to predict the
adsorption of polymer molecules3

In this section we discuss a method of solving the lattice model by GAs and
compare it with a classical technique. Next, we state the lattice model and pose
the optimization problem. We will solve the optimization problem using GAs.
We will also suggest ways to improve the convergence properties of GAs and
compare the results of these modifications with Levenberg-Marquardt technique.

10.4.1 The lattice model
The lattice model aims at computing the structure of adsorbed polymer molecules
near the surface and into the bulk. It aims at computing probabilities of various
polymer chain conformations by using physical properties. The structure is
described by two parameters viz. φi the segment volume fraction in layer i and Pi
the free segment probability in layer i. As we see below, the physics of the
problem is such that computation of Pi and φi is not straightforward since both

                                                
3 The authors wish to thank Dr. Harry J. Ploehn of Texas A&M University for
his assistance in this case study
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depend on one another implicitly. The probability of finding a free segment
(monomer) in layer i is defined by

ln Pi = χ sδ1,i + χ φ i − φ i
0( ) + ln φ i

0 (10.2)

where

φ i = λ j−iφ j
j=1

M

∑ (10.3)

and

φ i
0 = λ j−iφ j

0

j=1

M

∑ (10.4)

The free segment probability P* for a segment in the bulk solution is defined by

ln P* = χ (φ* − φ*
0 ) + ln φ*

0 (10.5)

Now the free segment probability pi with respect to the bulk solution is

pi = Pi

P*

(10.6)

which with

φ* = nr

Lp(r)
(10.7)

gives

φ i = φ*

r

1

pi

p(i,s) p(i,r − s +1)
s=1

r

∑ (10.8)

where pi,s is end segment probability, i.e. the probability that the end segment of
an s-mer is in layer i and

p(i,s) =
Pi,s

P*
s = piλ1 p(i −1,s −1) + λ 0 p(i,s −1) + λ1 p(i +1,s −1) (10.9)

Table. 10.3 gives the parameter values, for more details see Scheutjens et al.
(1979).

symbol meaning value

M number of lattice layers 20
r number of chains per segment 1000
φ* segment volume fraction in bulk 0.01

λ 0 ,λ1 fraction of nearest neighbors in the same layer,
and in the adjacent layer

0.5,0.25

χ Flory-Huggins polymer solvent interaction
parameter

in Case 1.: 0.0
in Case 2.: 0.5

χs differential adsorption energy parameter 1.0

φι segment volume fraction variable

φ i
0 solvent volume fraction in layer i = 1 -  φι

φ*
0 solvent volume fraction in the bulk solution = 1 -  φι

pi free segment probability w.r.t. the bulk solution variable
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Table. 10.3. Lattice model parameters and variables.

10.4.2 A General Framework to Solve the Lattice Model
The lattice model can be solved in an iterative manner as follows:

• Step 1. Guess φi, i = 1,2, ...M

• Step 2. Solve for pi, i = 1,2, ...M, using Eqs. 10.7, 10.8, 10.9, 10.10 and

10.11

• Step 3. Get φ i
' , i = 1,2,...M using Eqs. 10.12, 10.13 and 10.14

• Step 4. Use the difference J = (φ i − φ i
' )2

i=1

M∑  to correct φi, i  = 1,2 ...M

• Step 5. Stop if the difference is satisfactorily small, else goto step 2.

So the problem of solving the lattice model can be cast as a constrained
optimization problem (the constraint is 0.0 < φi < 1.0).

10.4.3 Solution of the Lattice Model by GAs
We solve the lattice model by solving the optimization problem stated earlier.
Observing results in the existing literature (Scheutjens, 1979) we note that the
profiles of Pi and φi are not varying everywhere so it will be easier if we
approximate the solution by the following polynomial form to reduce
dimensionality, i.e.

φi = aki
k−1, i = 1,2,..., M and N < M

k=1

N

∑ (10.10)

and estimate ak, k = 1, 2, ..., N that minimize the objective function

J = (φi − φi
' )2

i=1

M∑ . When N = M  this approximation approaches to the original

problem where no such approximation was made. N can be increased or decreased
depending on problem complexity. We start with a set of several subsets, each
subset containing the coefficients of the polynomial approximation and proceed
as outlined in the previous section. In order to enhance the convergence properties
we can augment the GA by a gradient search technique either at the end or
between each generation. The tuning parameters for the GA are the population
size, length of the vector representations, mutation and crossover rates and the
number of children in each generation. Results of the optimization procedure are
shown in Figures 10.17 and 10.18 for χ = 0.0 and χ = 0.5, respectively. Figures
10.19 and 10.20 show the plots of φi and pi vs. i for the last two iteration cycles
of the optimization procedure indicating convergence.
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10.5 Comparison with other Techniques
For purposes of comparison we solved the lattice model using a constrained
Levenberg-Marquardt (LM) method using finite difference gradients. Figures
10.21, 10.22, 10.23 and 10.24 show the results when we did not use the
polynomial approximation of the solution but optimized using the whole vector

[φ1, φ2, ...,φM]T. Figures 10.25, 10.26, 10.27 and 10.28 show the corresponding
results when we used the LM method along with polynomial approximation of
the solution. Figures 10.29, 10.30, 10.31 and 10.32 show the results of the
modified GA technique (GA+LM) with the LM method implemented after 10
generations. In the last method we let the GA run for the first ten generations and
from the tenth generation we picked the best candidate and did gradient search by a
constrained LM technique. For all the LM trials, we observed that the solution
was very sensitive to the initial guesses and convergence was not always
guaranteed. For the method employing a GA, we observed that convergence was
guaranteed from any random initial population but was not sharp. The GA+LM
method not only ensured convergence but gave sharp convergence in relatively
less number of total function evaluations. It should be noted that in this study in
order to develop a general solution strategy Roe's approximation (Scheutjens,
1979) was not used as an initial guess for optimization. Instead, the initial
solution was randomly picked in all cases. Contrary to the experience of
Scheutjens (1979) constrained nonlinear optimization works and might work even
better when Roe's approximation is used as a starting point. Polynomial
approximation pays when we have extended and complex cases of the same
problem. Our experience in this case shows that GA+LM is the safest approach
for guaranteed convergence.
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Since GAs are blind to the underlying nonlinearities and the analytic properties of
the objective function they are suitable for solving complex lattice models. GAs
can be effectively combined with traditional constrained gradient techniques to
ensure guaranteed and sharp convergence in the solution with very little or no a
priori knowledge of the physics of the system.

Case Study 1
(Best controller
synthesis for a
nonlinear plant)

population size  = 10
mutation probability  =  0.0081

crowding factor  =  0.3
generation gap  =  0.4
crossover rate  =  1

Case Study 2
(Optimization
of back mix
reactors in
series)

population size  = 10
mutation probability  =  0.0030

crowding factor  =  0.5
generation gap  =  0.4
crossover rate  =  1

Case Study 3
(Solution of
lattice model)

population size  = 10
mutation probability  =  0.0080

crowding factor  =  0.5
generation gap  =  0.6

crossover rate = 1

Table. 10.4. Parameters of GAs employed in the three case studies.4

10.6 Conclusions
We demonstrated the ability of GAs to solve complex optimization problems in
chemical engineering applications.  The performance of GAs was compared with
the traditional techniques where available.5 This study shows that GAs can handle
abstract and nonlinear objective functions efficiently. With a good front-end
software (made available by the authors) the application of GAs to any
optimization problem is very easy and requires minimal a priori knowledge about
the physics of the problem or the mathematical theory behind the optimization
technique.
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