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Abstract
In vehicle routing problems with time windows (VRPTW), a set of vehicles with
limits on capacity and travel time are available to service a set of customers with
demands and earliest and latest time for servicing. The objective is to minimize
the cost of servicing the set of customers without being tardy or exceeding the
capacity or travel time of the vehicles. As finding a feasible solution to the
problem is NP-complete, search methods based upon heuristics are most
promising for problems of practical size. In this chapter we describe GIDEON, a
Genetic Algorithm for heuristically solving the VRPTW. GIDEON has a global
customer clustering method and a local post-optimization method. The global
customer clustering method uses an adaptive search strategy based upon
population genetics, to assign vehicles to customers. The best solution, obtained
from the clustering method is improved by a local post-optimization method. The
synergy between a global adaptive clustering method and a local route
optimization method produce results superior to those obtained by competing
heuristic search methods. The results obtained by GIDEON on a standard set of 56
VRPTW problems obtained from the literature were as good as or better than
solutions from known competing heuristics.
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11.1 Introduction
The problem we address is the Vehicle Routing Problem with Time Windows
(VRPTW). The VRPTW involves routing a fleet of vehicles, with limited
capacities and travel times, from a central depot to a set of geographically
dispersed customers with known demands within specified time windows. The
time windows are two-sided, meaning that a customer must be serviced at or after
its earliest time and before its latest time. If a vehicle reaches a customer before
the earliest time it results in idle or waiting time. A vehicle that reaches a
customer after the latest time is tardy. A service time is also associated with
servicing each customer. The route cost of a vehicle is the total of the traveling
time (proportional to the Euclidean distance), waiting time and service time taken
to visit a set of customers.

The VRPTW arises in a wide array of practical decision making problems.
Instances of the VRPTW occur in retail distribution, school bus routing, mail and
newspaper delivery, municipal waste collection, fuel oil delivery, dial-a-ride
service and airline and railway fleet routing and scheduling. Efficient routing and
scheduling of vehicles can save government and industry millions of dollars a
year. The current survey of vehicle routing methodologies are available in [2]
[12][21]. Solomon and Desrosiers [28] provide an excellent survey on vehicle
routing with time windows.

In this chapter we describe GIDEON, a Genetic Algorithm system to heuristically
solve the VRPTW. GIDEON is a cluster-first route-second method that assigns
customers to vehicles by a process we call Genetic Sectoring and improves on the
routes using a local post-optimization method. The Genetic Sectoring method
uses a genetic algorithm to adaptively search for sector rays that partition the
customers into sectors or clusters served by each vehicle. It ensures that each
vehicle route begins and ends at the depot and that every customer is serviced by
one vehicle. The solutions obtained by the Genetic Sectoring method are not
always feasible and are improved using a local post-optimization method that
moves customers between clusters.

The chapter is arranged in the following form. Section 11.2 gives a mathematical
formulation of the VRPTW. Section 11.3 gives a description of the GIDEON
system. Section 11.4 describes the results of computational testing on a standard
set of VRPTW problems obtained from the literature. Section 11.5 is the
computational analysis of the solutions obtained from the GIDEON system and
with respect to competing heuristics. Section 11.6 contains the summary and
concluding remarks.

11.2 Mathematical Formulation for the VRPTW
The notation and expressions used in the model are useful in explaining the
genetic search. We present a mixed-integer formulation of the vehicle routing
problem with time window constraints. Our formulation is based upon the model
defined by Solomon [30]. The following notations will help in the description of
the GIDEON system. In the mixed-integer formulation the indices i,j=l,...,N and
k=l,...,K.
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Parameters:
K = number of vehicles
N = number of customers (0 denotes the central depot)
T = maximum travel time permitted for a vehicle
Ci = customer i
C0 = the central depot
Vk = vehicle route k
Ok = total overload for vehicle route k
Tk = total tardiness for vehicle route k
Dk = total distance for a vehicle route k
Rk = total route time for a vehicle route k
Qk = total over-route time for a vehicle route k
tij = travel time between customer i and j (proportional to the Euclidean distance)
vk = maximum capacity of vehicle k
ti = arrival time at customer i
fi = service time at customer i
wi = waiting time before servicing customer i
ei = earliest release time for customer i
li = latest delivery for customer i
qik = total demand of vehicle k until customer i
rik = travel time of vehicle k until customer i (including service time and waiting

time)
pi = polar coordinate angle of customer i
si = pseudo polar coordinate angle of customer i
F = fixed angle for Genetic Sectoring, Max[pi,...,pn]/2K, where n = 1,...,N
B = length of the bit string in a chromosome representing an offset, B = 3
P = population size of the Genetic Algorithm, P = 50
G = number of generations the Genetic Algorithm is simulated, G = 1000
Ek = offset of the kth sector, i.e, decimal value of the kth bit string of size B
I = a constant value used to increase the range of Ei
Sk = seed angle for sector k
S0 = initial seed angle for Genetic Sectoring, S0 = 0
α = weight factor for the distance
β = weight factor for the route time
η = penalty weight factor for an overloaded vehicle
γ = penalty weight factor for exceeding maximum route time in a vehicle route
κ = penalty weight factor for the total tardy time in a vehicle route

Variables:

yik =
1, if i is serviced by vehicle k

0, otherwise




xijk =
1, if the vehicle k travels directly from i to j

0, otherwise
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The mixed integer formulation for the vehicle routing problem is stated as
follows:

(VRPTW) Min cijk xijk
k=1

K

∑
j=1

N

∑
i=1

N

∑ (11.2.1)

where
cijk = tij + wi + f i

Subject to:

qik yik ≤ vk , k = 1,K, K
i=0

N

∑ (11.2.2)

  

yik tij + f i + wi( ) ≤ vk , k = 1,K, K
j=0

N

∑
i=0

N

∑ (11.2.3)

yik = 0 or 1; i = 0,K,1; k = 1,K, K (11.2.4)

  
xijk = 0 or 1; i, j = 1,K, N; k = 1,K, K (11.2.5)

  
yik =

K, i = 0

1, i = 1,K, N


k=1

K

∑ (11.2.6)

xijk = yjk , j = 0,K, N; k = 1,K, N
ji=0

N

∑ (11.2.7)

  

xijk = yik , i = 1,K, N; k = 1,K, N
j=0

N

∑ (11.2.8)

  
t j ≥ ti + si + tij − 1− xijk( ) ⋅T, i, j = 1,K, N, k = 1,K, K (11.2.9)

  ei ≤ ti < li , i = 1,K, N (11.2.10)

  ti ≥ 0, i = 1,K, N (11.2.11)

The objective is to minimize the vehicle routing cost Cijk (11.2.1) subject to
vehicle capacity, travel time and arrival time feasibility constraints. A feasible
solution for the VRPTW services all the customers without the vehicle exceeding
the maximum capacity of the vehicle (11.2.2) or the travel time of the vehicle
(11.2.3). In addition, each customer can be served by one and only one vehicle
(11.2.6). Travel time for a vehicle is the sum total of the distance travelled by the
vehicle including the waiting and service time. Waiting time is the amount of
time that a vehicle has to wait if it arrives at a customer location before the
earliest arrival time for that customer. The time feasibility constraints for the
problem are defined in (11.2.9), (11.2.10) and (11.2.11). The constraint (11.2.9)
ensures that the arrival times between two customers are compatible. The
constraint (11.2.10) enforces the arrival time of a vehicle at a customer site to be
within the customers earliest and latest arrival times and (11.2.11) ensures that
the arrival time of the vehicle at a customer location is always positive.
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The vehicle routing problem (VRP), without time windows, is NP-complete [3]
[18]. Solomon [30] and Savelsbergh [25] indicate that the time constrained
problem is fundamentally more difficult than a simple VRP even for a fixed fleet
of vehicles. Savelsbergh [25] has shown that finding a feasible solution for a
VRPTW using a fixed fleet size is NP-complete. Due to the intrinsic difficulty of
the problem, search methods based upon heuristics are most promising for
solving practical size problems [1] [9] [17] [23] [23] [25] [27] [29]. Heuristic
methods often produce optimum or near optimum solutions for large problems in
a reasonable amount of computer time. Therefore the development of heuristic
algorithms that can obtain near optimal feasible solutions for large VRPTW are
of primary interest.

The GIDEON system that we propose to solve the VRPTW is a cluster-first
route-second heuristic algorithm that solves an approximation of the
mathematical model described in (11.2.1). The algorithm has two phases
consisting of a global search strategy to obtain clusters of customers and a local
post-optimization method that improves the solution. The clustering of
customers is done using a Genetic Algorithm (GA) and the post-optimization
method moves and exchanges customers between routes to improve the solution.
The two processes are run iteratively a finite number of times to improve the
solution quality.

11.3 The GIDEON System
The global search strategy for clustering customers in GIDEON is done using a
Genetic Algorithm(GA). GA's are a class of heuristic search algorithms based
upon population genetics [6] [7] [16]. As they are inherently adaptive, genetic
algorithms can converge to near optimal solutions in many applications. They
have heen used to solve a number of complex combinatorial problems [4] [5] [15]
[19]. The GA is an iterative procedure that maintains a pool of candidates
simulated over a number of generations. The population members are referred to
as chromosomes. The chromosomes are fixed length strings with a finite number
of binary values. Each chromosome has a fitness value assigned to it based upon
a fitness function. The fitness value determines the relative ability of the
chromosome to survive over the generations. Chromosomes with high fit values
have a higher probability of surviving into the next generation compared to
chromosomes with low fit values. At each generation, chromosomes are subjected
to selection, crossover and mutation. Selection allows chromosomes with high fit
values to survive into the next generation. Crossover splices chromosomes at
random points and exchanges it with other spliced chromosomes. Mutation
changes the bit value of a chromosome to its complementary value. Selection and
crossover search a problem space exploiting information present in the
chromosomes by selecting and recombining primarily those offspring that have
high fitness values. These two processes eventually produce a population of
chromosomes with high performance characteristics. The mutate operator is a
secondary operator that prevents premature loss of information by randomly
mutating bits in a chromosome. For a detailed description of this process refer to
[11].

The local post-optimization method in GIDEON improves a solution by shifting
or exchanging customers between routes if it results in reduction of the total
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routing cost. The method shifts and exchanges customers between routes until no
more improvements are found [22][36][37]. In the shift procedure, one customer
is removed from a route and inserted into a different route. In the exchange
procedure, one customer each from two different routes is removed and inserted
into the other's route. In both shift exchange procedures, improved solutions are
accepted if the insertion results in the reduction of the total cost for routing the
vehicles. The shift and exchange heuristics have been implemented successfully in
many combinatorial problems [20][22][32][36]. The local post-optimization
method for the GIDEON system uses the shift and exchange of one and two
customers between routes.

The search space used by GIDEON is a relaxation of the feasible region of the
mathematical model proposed in (11.2.1). The mathematical model (11.2.1) is
approximated by the GIDEON system by a relaxation of the capacity, route time
and time window constraints in a Lagrangian Relaxation fashion. The cost
function used by the GIDEON system drives the search for a good feasible
solution by penalizing violation of capacity, route or time window constraints.
The objective function used by the GIDEON system is stated as:

VRPTW( ) Min cijk xijk
k=1

K

∑
j=1

N

∑
i=1

N

∑ (11.2.12)

where

cijk = α tij + β ⋅ ti + f i + tij








 + η ⋅ max 0, qik − vk



















+κ ⋅ max 0, rik − li

















+ γ ⋅ max 0, ti + f i + tij − T























The cost function includes components weighted by coefficients α  for distance, β
for route time and penalty weighting factors, η for vehicle overload, γ  for travel
time in excess of the allocated route time for the vehicle and κ for tardiness. The
GIDEON system explores for feasible solutions to the VRPTW with weights that
drive the model towards feasibility in the VRPTW problem. The weights for
GIDEON were derived empirically and set at α  = 0.5, β = 0.05, η = 50, κ = 25
and γ , = 50. The weights are biased towards finding a feasible solution in
comparison to reducing the total distance and route time. The main priority of the
cost function (11.2.12) is to obtain a feasible solution. Therefore the coefficients
of the cost function (11.2.12) gives higher priority to reducing tardiness and
overloading vehicles, followed by vehicles that exceed the maximum allotted
route time for a vehicle. If there is no violation of the capacity, time feasibility
and route time constraints, then the coefficients of the cost function (11.2.12) are
to reduce the total distance followed by the total route time. The weights for the
coefficients of the cost function were chosen to first obtain a feasible solution and
then minimize the total distance and route time. The cost function (11.2.12) was
experimented with other weight values, values that gave higher weights to the
cost coefficients α and β and lower weights to η, α  and γ, but these resulted in
infeasible or solutions of poor quality.
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The GIDEON system uses the cluster-first route-second method to solve a
VRPTW. That is, given a set of customers and a central depot, the system
clusters the customers using the GA, and the customers within each sector are
routed using the cheapest insertion method [13]. The clustering of customers
using a GA is referred to as Genetic Sectoring. Genetic Sectoring has been
successfully used to solve vehicle routing and scheduling problems with complex
constraints [31][32][33][34][35]. The GIDEON system allows exploration and
exploitation of the search space to find good feasible solutions with the
exploration being done by the GA and the exploitation by the local post-
optimization procedure.

The GENESIS [14] genetic algorithm software was used in the implementation of
the GIDEON system. The chromosomes in GENESIS are represented as bit
strings. The sectors (clusters) for the VRPTW are obtained from a chromosome
by subdividing it into K divisions of size B bits. Each subdivision is used to
compute the size of a sector. The fitness value for the chromosome is the cost
function (2.12) for serving all the customers computed with respect to the sector
divisions derived from it.

In an N customer problem with the origin at the depot, the GIDEON system
replaces the customer angles p1,...,pN with pseudo polar coordinate angles
s1,..,sN. The pseudo polar coordinate angles are obtained by normalizing the
angles between the customers so that the angular difference between any two
adjacent customers is equal. This allows sector boundaries to fall freely between
any pair of customers that have adjacent angles, whether the separation is small
or large. The customers are divided into K sectors, where K is the number of
vehicles, by planting a set of "seed" angles, S0,...,Sk, in the search space and
drawing a ray from the origin to each seed angle. The initial number of vehicles,
K , required to service the customers is obtained using Solomon's insertion

heuristic [30]. The initial seed angle S0 is assumed to be 0°. The first sector will

lie between seed angles S0 and S1 the second sector will lie between seed angles

S1 and S2, and so on.

The Genetic Sectoring process assigns a customer, Ci, to a sector or vehicle

route, Vk, based on the following equation:

Ci is assigned to Vk if Sk < si <= Sk+1, where k = 0,...,K-1

Customer Ci is assigned to vehicle Vk if the pseudo polar coordinate angle si is

greater than seed angle Sk but is less than or equal to seed angle Sk+1. Each seed

angle is computed using a fixed angle and an offset from the fixed angle. The
fixed angle, F, is the minimum angular value for a sector and assures that each
sector gets represented in the Genetic Sectoring process. The fixed angle is
computed by taking the maximum polar coordinate angle within the set of
customers and dividing it by 2K. The offset is the extra region from the fixed
angle that allows the sector to encompass a larger or a smaller sector area. The
GA is used to search for the set of offsets that will result in the minimization of

the total cost of routing the vehicles. If a fixed angle and its offset exceeds 360°,
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then that seed angle is set to 360° thereby allowing the Genetic Sectoring process
to consider vehicles less than K to service all its customers. Therefore K , the
initial number of vehicles with which the GIDEON system is invoked, serves as
the upper bound on the number of vehicles that can be used for servicing all the
customers.

The bit size representation of an offset in a chromosome B was set at 3 bits. Bit
size representations larger than 3 were experimented with and resulted in poor
quality solutions. The decimal conversion of 3 bits results in a range of integer
values between 0 and 7. The decimal values retrieved from the subset of a
chromosome are multiplied by a constant I that increases the range of the offset.
The value derived from the decimal conversion of the bit values times the

constant value I are mapped proportionately to the offsets with the value 0 as a 0°

offset and the bit value 10.5 and 10.5° as the maximum offset. Figure 11.1
describes the chromosome mapping used to obtain the offsets.

. . . 0 0 00 1 011 00 0 1 0 0 0 45

E
EE1 2 k

Fitness Value

Figure 11.1 Representation of the offsets using a chromosome.

The seed angles are derived from the chromosome using the following equation:

Si = Si-1 + F + (Ei  · 1) (11.2.13)

The fitness value of a chromosome is the total cost of routing K vehicles for
servicing N customers using the sectors formed from the set of seed angles derived
from the chromosome. The seed angles are derived using the fixed angle and the
offsets from the chromosomes. The customers within the sectors, obtained from
the chromosomes, are routed using the cheapest insertion method. The cheapest
insertion method takes each unrouted customer in the sector and each edge {i, j} in
the current tour and computes the cost of inserting the unrouted customer between
i and j. The unrouted customer that has the least insertion cost at edge {i, j} is
selected to be inserted between i and j. The cost of inserting customer Ci into

route Vk using the cheapest insertion method is calculated using the insertion

cost function:

insertion cost of Ci = αDk + βRk + ηOk + κTk + γQk (11.2.14)

The insertion cost function (11.2.14) will accept infeasible solutions if the
reduction in total distance is high enough to allow either a vehicle to be
overloaded or be tardy. Overloading and tardiness in a vehicle route are penalized
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in the insertion cost function (11.2.14). The weights for insertion cost (11.2.14)

were set at α = 0.5, β = 0.05, η = 50, κ = 50, and γ = 25.

In the GIDEON system each chromosome represents a set of offsets for a
VRPTW. Therefore, a population of P chromosomes usually has P different
solutions for a VRPTW. That is, there may he some chromosomes in the
population that are not unique. At each generation, P chromosomes are evaluated
for fitness. The chromosomes that have the least cost will have a high probability
of surviving into the next generation through the selection process. As the
crossover operator exchanges a randomly selected portion of the bit string between
the chromosomes, partial information about sector divisions for the VRPTW is
exchanged between the chromosomes. New information is generated within the
chromosomes by the mutation operator.

The GIDEON system uses selection, crossover and mutation to adaptively explore
the search space for the set of sectors that will minimize the total cost of the
routes over the simulated generations for the VRPTW. The GIDEON system
would utilize more computer time than traditional heuristic algorithms because
every time the Genetic Sectoring process is invoked it has to evaluate P.G vehicle
routes, where P is the population size and G is number of generations to he
simulated. The worst case running time bounds for the Genetic Sectoring process

is O
N2

K







 as there is on the average 
N

K
 customers for each route and 

N

K
 edges

have to be checked for each of the K routes.

The parameter values for the number of generations, population size, crossover
and mutation rates for the Genetic Sectoring process were set at 1000, 50, 0.8 and
0.001. During the simulation of the generations, the GIDEON system keeps track
of the set of sectors obtained from the genetic search that has the lowest total
route cost. The genetic search terminates either when it reaches the number of
generations to be simulated or if all the chromosomes have the same fitness
value. The best set of sectors obtained after the termination of the genetic search
does not always result in a feasible solution. The solution obtained from the GA
is improved using the local post-optimization procedure that shifts and exchanges
customers between the vehicle routes.

The post-optimization method is similar to the 2-opt method, as it deletes two
arcs of a customer and inserts the customer into a location of a different route that
has the lowest cost. The worst case running time bounds for the local post-

optimization process is O
N

K






2





 as there is on the average 

N

K
 customers for

each route and on the average 
N

K
 edges have to be checked.

The local post-optimization process is carried out until no more improvements
can be made to the solution obtained from the GA. At the termination of the local
post-optimization procedure, the customers are ranked in order of the sectors, and
within the sectors in the sequence in which they are visited by the vehicles. The
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customer angles, p1,...,pN, are replaced with pseudo polar coordinate angles
sl,...,sN in order of the customer rank. The assignment of pseudo polar coordinate

angles, using route and customer sequence, clusters together customers with
geographical and temporal characteristics that can be serviced by a single vehicle.

The customers with the new pseudo polar coordinate angles are once again used to
form new sectors using the GA. The best set of sectors obtained from the GA
using the new customer polar coordinate angles is improved using the local post-
optimization procedure. This iteration between Genetic Sectoring process and
local post-optimization method is carried out a predetermined number of times and
was set at 5. The flow of the GIDEON system is described in Figure 11.2

The Genetic Sectoring and local post-optimization procedures are symbiotic as the
Genetic Sectoring is a meta-search strategy that forms the sectors and the local
post-optimization method gives adjacency information about the customers back
to the Genetic Sectoring process. These two methods derive information from
each other in order to obtain a good feasible solution.

Step 1: Set the number of cluster-route iterations: itermax = 3.
Set the current iteration number: iter = 0.
Set the bit string size for the offset: Bsize = 5.

Step 2: Sort the customers in order of their polar coordinate angles, and
assign pseudo polar coordinate angles to the customers.

Set the lowest global route cost to infinity: g = ∞.
Set the lowest local route cost to infinity: l = ∞.

Step 3: Increment the number of iterations: iter = iter + l.
If iter > itermax, go to Step 7.

Step 4: If GA has terminated, go to Step 5.
For each chromosome in the population:

For each bit string of size BSize,
calculate the seed angle,
sector the customers, and
route the customers within the sectors using the cheapest 
insertion method.

If the cost of the current set of sectors is lower than l
set l to the current route cost, and
save the set of sectors in lr.

If the cost of the current set of sectors is lower than g,
set g to the current route cost, and
save the set of sectors in gr.

Do Selection, Crossover and Mutation on the chromosomes.
Go to Step 4.
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Step 5: Do local post-optimization using the route lr.
If no improvements can he made to route lr,

go to Step 6.
If the current improved route has lower cost than l,

set l to the current cost, and
save the set of sectors in lr.

If the current improved route has lower cost than g,
set g to the current cost, and
save the set of sectors in gr.

Go to step 5.

Step 6: Rank the customers of route lr in order of the sectors, and within the 
sectors in order of the sequence in which they are visited.
Sort the customers by the rank.
Assign pseudo polar coords to the customers in order of sorted rank.
Go to Step 3.

Step 7: Stop the Genetic Sectoring Heuristic with a local post-optimization 
solution.

Figure 11.2 Flow of the GIDEON system.

11.4 Computational Results
GIDEON was run on a set of 56 VRPTW problems in six data sets denoted R1,
C1, RC1, R2, C2, and RC2, developed by Solomon [30]. Solomon generated
vehicle routing problems with two time windows using the standard set of vehicle
routing test problems from Christofides et al. [3].The vehicle routing problems
with two time windows were generated by assigning earliest and latest time
windows to each of the customers in addition to the service time required by each
of the customers. In terms of time window density (the percentage of customers
with time windows), the problems have 25%, 50%, 75%, and 100% time window
density. Each of the problems in these data sets has 100 customers. The fleet size
to service them varied between 2 and 21 vehicles.

For the R1 data set, without time window constraints, a fleet of 10 vehicles, each
with a capacity of 200 units, was required to attain a feasible solution. Each of
the customers in the R1 data set required 10 units of service time and a maximum
route time of 230 units. In the C1 data set, each customer required 90 units of
service time and the vehicles had a capacity of 200 units and a maximum route
time of 1236 units. The optimal solution for this problem class requires 10
vehicles and has a distance of 827 units [9]. The RC1 data set was created using
data sets, R1 and C1. The vehicle capacity for this problem was set at 200 units
with a maximum route time of 240 units. Each of the customers in this problem
required 10 units of service time.

The R2 data set was a modification of the R1 data set to allow for servicing of
many customers by one vehicle. The maximum route time of the vehicles was set
at 1000 units and each vehicle had a capacity of 1000 units. Two vehicles are
enough to satisfy the customer demands if no time windows are present. In the
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C2 data set, customers from the C1 data set were relocated to create a structured
problem with three large clusters of customers. The vehicles for this data set had a
maximum route time of 3390 units and a capacity of 700 units with each
customer requiring 90 units of service time. For the RC2 data set, the customer
demands and service times are the same as for RCI. The vehicles for this data set
have a maximum route time of 960 units and a capacity of 1000 units. Without
time windows, a fleet of two vehicles was enough to satisfy the demands.

The data sets, R1, C1, and RC1, had short horizons while the data sets, R2, C2,
and RC2, had long horizon. Short horizon problems have vehicles that have
small capacities and short route times and cannot service many customers at one
time. Long horizon problems use vehicles that have large capacities and long
travel times, and are able to service many customers with fewer vehicles. The
VRPTW problems generated by Solomon incorporate many distinguishing
features of vehicle routing with two-sided time windows. The problems vary in
fleet size, vehicle capacity, travel time of vehicles, spatial and temporal
distribution of customers, time window density (the number of demands with
time windows), time window width, percentage of time constrained customers and
customer service times.

Solutions to each of the 56 VRPTW were obtained by Solomon [30] and
Thompson [37]. Solomon tested a number of algorithms and heuristics and
reported that the overall best performances were obtained using a sequential
insertion procedure that used a weighted combination of time and distance in its
cost function. The best solutions using the heuristic insertion procedure were
obtained using eight different combinations of parameters and three different
initialization criteria. Thompson's solutions use local post-optimization methods,
based on cyclical transfers, to obtain feasible solutions. The solutions reported are
the best of eight different combinations of parameters and two different
initialization criteria. For comparison purposes the heuristic used to obtain the
best solution by Solomon will he referred to as Heuristic 1 and by Thompson as
Heuristic 2.

Koskosidis et al. [17] used a "soft" time approach based on the Generalized
Assignment Heuristic for solving the VRPTW. This approach allowed time
windows to be violated at a cost which results in a final solution that could
infeasible. This method was used to solve only some of Solomon's time window
problems and name some problems from the R1 and RC1 data set and all of the
problems in data set C1.

Potvin et. al. [23] used a tabu search heuristic to solve the VRPTW. The tabu
search heuristic uses a specialized exchange heuristic to minimize the number of
routes followed by the distance. The results of the average number of vehicles,
distance, waiting time and computation time for each of the data sets are reported.

In GIDEON the solution quality is based on minimizing the number of routes
followed by the distance and route time. That is, a solution with M number of
routes is better than M+1 routes, even if the distance and route time for the M
routes is greater than M+1 routes. In VRPTW it is possible to get distance and
route time for M+1 routes, that is less than the distance and route time for M+I



13

routes. The GIDEON system was used to solve the 56 VRPTW problems using
two types of initial placement of customers. The first method initially sorted the
customers by the polar coordinate angles before assigning the customers the
pseudo polar coordinate angles. The second method assigned pseudo polar
coordinate angles to the customers randomly. The solutions obtained by GIDEON
using the two methods are tabulated in Tables 11.1 and 11.2. The best of the
solutions obtained from these two methods were compared against the best
solutions obtained Solomon's and Thompson's heuristics.

Sorted Data Unsorted Data

Problem
Number

Number of
Vehicles

Total
Distance

CPU Best Total
Distance

CPU Best

R101 2 0 1700 88.3 √ 1708 109.4
R102 1 7 1549 100.5 √ 1578 102.2
R103 1 3 1319 102.9 √ 1432 115.6
R104 1 0 1090 50.4 √ 1210 135.2
R105 1 5 1448 95.9 √ 1494 121.2
R106 1 3 1363 105.3 √ 1439 127.7
R107 1 1 1187 103.5 √ 1219 129.1
R108 1 0 1048 91.0 √ 1158 127.5
R109 1 2 1345 96.5 1328 127.7 √
R110 1 1 1234 103.1 √ 1248 115.7
R111 1 1 1238 109.5 √ 1288 124.2
R112 1 0 1082 121.9 √ 1183 123.3

C101 1 0 893* 93.7 833 87.2 √
C102 1 0 879 92.3 832 88.7 √
C103 1 0 873 89.5 √ 894 86.9
C104 1 0 904 95.3 √ 1150 90.8
C105 1 0 922 93.5 874 91.8 √
C106 1 0 902 91.2 √ 998 95.1
C107 1 0 926 93.1 √ 993 90.1
C108 1 0 978 93.5 928 89.9 √
C109 1 0 957 87.8 √ 970 92.4

RC101 1 5 1767 104.7 √ 1786 126.3
RC102 1 4 1569 105.5 √ 1627 115.4
RC103 1 1 1408 120.2 1328 116.5 √
RC104 1 1 1263 108.4 √ 1271 150.3
RC105 1 4 1612 111.6 √ 1638 141.6
RC106 1 2 1608 109.2 √ 1657* 102.9
RC107 1 2 1396 112.8 1389 108.5 √
RC108 1 1 1250 115.9 √ 1337 107.9

Legend:
Sorted data: Customers sorted by polar coordinate angles before being assigned pseudo polar

coordinate angles.
Unsorted data: Customers assigned pseudo polar coordinate angles without being sorted.
CPU: CPU time tken to obtain a solution on the SOLBOURNE 5/802
Best: Best of two solutions
*: Infeasible solution

Table 11.1 Comparison of solutions obtained by GIDEON on sorted and unsorted
customers for data sets R1, C1 and RC1.
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The comparison between the solutions obtained by GIDEON and other heuristic
algorithms were done in the following form. As Solomon [30] and Thompson
[37] report the results for each of the problems in the literature, the solutions
obtained by GIDEON were compared with each of their reported solutions. In
addition the average number of vehicles and distance obtained by the GIDEON
system are compared against the solutions obtained by Potvin's Tabu search
heuristic [23]. The best solutions obtained by GIDEON did better than both
Heuristic 1 and Heuristic 2 on 41 of the 56 problems as indicated in Tables 11.3
and 11.4 in bold. In comparison to the best solutions obtained by Heuristic 1 and
Heuristic 2, the solutions obtained by GIDEON resulted in an average reduction
of 3.9% in fleet size and 4.4% in distance traveled by the vehicles.
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Sorted Data Unsorted Data

Problem
Number

Number of
Vehicles

Total
Distance

CPU Best Total
Distance

CPU Best

R201 4 1478 127.7 √ 1605 165.6
R202 4 1279 128.7 √ 1329 249.4
R203 3 1273 220.9 1167 251.3 √
R204 3 909 137.5 √ 1007 215.9
R205 3 1274 128.4 √ 1286 226.2
R206 3 1186 135.1 1098 315.4 √
R207 3 1059 119.9 1015 183.9 √
R208 3 826 119.1 √ 900 214.3
R209 3 1159 140.6 √ 1165 203.6
R210 3 1269 215.3 √ 1275 272.4
R211 3 1005 154.8 898 267.7 √

C201 3 753 123.1 √ 947* 116.1
C202 3 782 153.0 756 124.0 √
C203 3 855 162.2 √ 1301* 119.6
C204 3 831 109.0 803 140.1 √
C205 3 848 115.1 667 119.0 √
C206 3 915 116.2 694 139.3 √
C207 3 866 113.3 730 156.2 √
C208 3 853 135.1 735 174.4 √

RC201 4 1823 135.9 √ 1979 149.2
RC202 4 1478 148.4 1979 155.3 √
RC203 4 1323 156.0 √ 1459 272.9
RC204 4 1089 116.6 1402 192.9 √
RC205 4 1686 103.4 1021 183.3 √
RC206 4 1545 128.1 1594 180.4 √
RC207 4 1501 156.1 √ 1530 132.6
RC208 4 1038 115.7 √ 1514 141.9

Legend:1115
Sorted data: Customers sorted by polar coordinate angles before being assigned pseudo polar

coordinate angles.
Unsorted data: Customers assigned pseudo polar coordinate angles without being sorted.
CPU: CPU time taken to obtain a solution on the SOLBOURNE 5/802
Best: Best of two solutions
*: Infeasible solution

Table 11.2 Solutions obtained by GIDEON on sorted and unsorted customers for
data sets R2, C2 and RC2.
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Heuristic 1 Heuristic 2 GIDEON

Problem
Number

Number of
Vehicles

Total
Distance

CPU1 Number of
Vehicles

Total
Distance

CPU2 Number of
Vehicles

Total
Distance

CPU3

R101 2 1 1873 21.8 1 9 1734 1394 2 0 1700 88.2
R102 1 9 1843 22.9 1 7 1881 3209 1 7 1549 100.5
R103 1 4 1484 24.5 1 5 1530 3337 1 3 1319 102.9
R104 1 1 1188 27.3 1 0 1101 2327 1 0 1090 50.4
R105 1 5 1673 22.0 1 5 1535 2359 1 5 1448 95.9
R106 1 4 1475 23.5 1 3 1392 1575 1 3 1363 105.2
R107 1 2 1425 25.0 1 1 1250 3261 1 1 1187 103,4
R108 1 0 1137 28.0 1 0 1035 1575 1 0 1048 91.0
R109 1 3 1412 23.4 1 2 1249 2236 1 2 1345 96.5
R110 1 2 1393 25.0 1 2 1258 1514 1 1 1234 103.1
R111 1 2 1231 25.0 1 2 1215 3046 1 1 1238 109.4
R112 1 0 1106 28.2 1 0 1103 2168 1 0 1082 121.9

C101 1 0 853 22.4 1 0 829 464 1 0 833 87.5
C102 1 0 968 23.7 1 0 934 1360 1 0 832 88.7
C103 1 0 1059 26.7 1 0 956 2404 1 0 873 81.6
C104 1 0 1282 30.7 1 0 1150 3602 1 0 904 95.3
C105 1 0 861 22.8 1 0 829 449 1 0 874 91.8
C106 1 0 897 23.2 1 0 868 716 1 0 902 91.2
C107 1 0 904 24.1 1 0 926 757 1 0 926 93.1
C108 1 0 855 25.2 1 0 866 987 1 0 928 89.9
C109 1 0 888 28.8 1 0 912 1277 1 0 957 87.8

RC101 1 6 1867 21.9 1 6 1851 2282 1 5 1767 104.7
RC102 1 5 1760 22.8 1 4 1644 2957 1 4 1569 105.5
RC103 1 3 1673 24.1 1 2 1465 3661 1 1 1328 116.5
RC104 1 1 1301 26.1 1 1 1265 2438 1 1 1263 108.4
RC105 1 6 1922 23.0 1 5 1809 2417 1 4 1612 111.6
RC106 1 3 1611 22.7 - - - 1 2 1608 109.2
RC107 1 3 1385 24.2 1 2 1338 2295 1 2 1396 122.8
RC108 1 1 1253 25.6 1 1 1228 2297 1 1 1250 115.9

Legend:
Heuristic 1: Best solution from Solomon's Heuristic [28].
Heuristic 2: Best solution from Thompson's Heuristic [30].

CPU1: CPU time in seconds to obtain a solution on a DEC-I0.
CPU2: CPU time in seconds to obtain a solution on an IBM PC-XT.
CPU3: CPU time in seconds to obtain a solution on a SOLBOURNE 5/802.

Table 11.3: Solutions for data Sets R1, C1 and RC1 using the three different
heuristics.
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Heuristic 1 Heuristic 2 GIDEON

Problem
Number

Number of
Vehicles

Total
Distance

CPU1 Number of
Vehicles

Total
Distance

CPU2 Number of
Vehicles

Total
Distance

CPU3

R201 4 1741 32.9 4 1786 3603 4 1478 127.7
R202 4 1730 42.2 4 1736 2514 4 1279 128.7
R203 3 1578 60.1 3 1309 12225 3 1167 251.3
R204 3 1059 90.6 3 1025 22834 3 909 137.5
R205 3 1471 42.9 3 1392 3039 3 1274 128.4
R206 3 1463 53.3 3 1254 2598 3 1098 315.4
R207 3 1302 71.9 3 1072 2598 3 1015 183.9
R208 3 1076 108.6 3 862 12992 3 826 119.1
R209 3 1449 52.5 3 1260 7069 3 1159 140.6
R210 4 1542 51.2 3 1269 11652 3 1269 215.3
R211 3 1016 82.7 3 1071 9464 3 898 267.7
C201 3 591 31.2 3 590 240 3 753 123.1
C202 3 731 39.7 3 664 1644 3 756 124.0
C203 3 811 48.0 3 653 2757 3 855 162.2
C204 4 758 61.0 3 684 2211 3 803 140.0
C205 3 615 36.0 3 628 1723 3 667 119.0
C206 3 730 40.3 3 641 1429 3 694 139.0
C207 3 691 41.4 3 627 722 3 730 156.0
C208 3 615 46.6 3 670 1103 3 735 174.0

RC201 4 2103 31.1 4 1959 1140 4 1823 135.9
RC202 4 1799 39.1 4 1858 4164 4 1459 155.3
RC203 4 1626 53.7 4 1521 6109 3 1323 156.0
RC204 3 1208 85.5 3 1143 5015 3 1021 192.9
RC205 5 2134 36.5 4 1988 5906 4 1594 183.3
RC206 4 1582 39.9 3 1515 4833 3 1530 180.3
RC207 4 1632 30.3 4 1457 13340 3 1501 156.1
RC208 3 1373 77.6 - - - 3 1038 115.7

Legend:
Heuristic 1: Best solution from Solomon's Heuristic [28].
Heuristic 2: Best solution from Thompson's Heuristic [30].

CPU1: CPU time in seconds to obtain a solution on a DEC-I0.
CPU2: CPU time in seconds to obtain a solution on an IBM PC-XT.
CPU3: CPU time in seconds to olbtain a solution on a SOLBOURNE 5/802.

Table 11.4: Solutions for data sets R2, C2 and RC2 using the three different
heuristics.

Table 11.5 is a summary of the average improvement in vehicle fleet size and
distance obtained by GIDEON with respect to Heuristic 1 and Heuristic 2 for the
six different data sets. The GIDEON system was written in C language and the
experiments were conducted on a SOLBOURNE 5/802 system. The solution to
the VRPTW using the GIDEON system required an average of 127 CPU seconds
to be solved on a SOLBOURNE 5/802 computer. The SOLBOURNE 5/802
computer is about 10 times faster than a personal computer. On the average, the
Genetic Sectoring process took about 27 seconds to form the sectors and the local
post-optimization process took 100 seconds to improve the solution.
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Heuristic 1 Heuristic 2

Problem
group

Average%
difference in

number of
Vehicles

Average%
difference in Total

Distance

Average%
difference in

number of
Vehicles

Average%
difference in

Total
Distance

R1 6.1 9.5 1.9 4.2
C1 0.0 6.2 0.0 2.7

RC1 7.4 7.6 3.9 2.7
R2 4.5 19.8 -2.9 11.7
C2 4.5 -8.1 0.0 -27.4

RC2 12.9 16.1 8.0 14.2

Legend:
Heuristic 1: Best solution from Solomon’s Heuristic [28].
Heuristic 2: Best solution from Thompson's Heuristic [30].

Table 11.5: Comparison of the average% differences between GIDEON and
Heuristic 1 and Heuristic 2.

Problem
Group GIDEON Tabu Heuristic

Number of
Vehicles

Total
Distance

CPU1 Number of
Vehicles

Total
Distance

CPU2

R1 12.8 1299 99.96 12.8 1305 820
C1 10.0 892 89.92 10.0 871 569

RC1 12.5 1473 110.04 12.8 1459 825
R2 3.2 1125 183.28 3.2 1166 1113
C2 3.0 749 149.29 3.0 611 630

RC2 3.3 1433 159.44 3.5 1405 997

Legend:
GIDEON: Best average solution from GIDEON.
Tabu Heuristic: Best average solution from the Tabu heuristic [23].

CPU1: CPU time in seconds to obtain a solution on a SOLBOURNE 5/802.

CPU2: CPU time in seconds to obtain a solution on a SUN SPARC/10.

Table 11.6

The quality of the solutions obtained by GIDEON for the VRPTW measured in
fleet size and total distance traveled vary considerably with geographical clustering
and time window tightness of the customers. For example, for a problem from
the C1 data set, the Genetic Sectoring method quickly clusters the data in the
natural fashion and finds a feasible solution in a short period of time. The Genetic
Sectoring for clusters is much more extensive for an unclustered problem in data
set R1. For an unclustered problem, the assignment of customers to vehicles does
not follow radial clustering, but rather strongly utilizes the local search process to
form pseudo clusters for the Genetic Sectoring process. As expected, for problems
from data sets RC1 and RC2, in which the customers are not all naturally
clustered, GIDEON produced good solutions. For problems in data sets R2, C2
and RC2 the Genetic Sectoring process is reliant upon the local optimization
process to obtain good solutions due to the small number of clusters involved.
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GIDEON consistently produces higher performance solutions relative to
competing heuristics on problems that have large numbers of vehicles, tight
windows and customers that are not clustered. Further computational analysis was
performed to analyze the significance of the solutions obtained by GIDEON
against Heuristic 1 and Heuristic 2.

The average solution obtained by GIDEON for the number of vehicles and
distance were compared against the best of the two solutions that were obtained
by Potvin's [23] Tabu Search Heuristic (see Table 11.6). GIDEON has a lower
number of average vehicles for data sets RC1 and RC2 compared to the Tabu
Search Heuristic, and the same number of average vehicles for the data sets R1,
C1, R2 and C2. In terms of average distance traveled, GIDEON has lower values
for data sets R1 and R2. The Tabu Search Heuristic has lower distances for the
data sets R1, C1, RC1, C2 and RC2. GIDEON is better in terms of minimizing
the number of vehicles for all of the data sets.

11.5 Computational Analysis
Three kinds of computational analyses were performed on the solutions obtained
from GIDEON. Computational analyses were done on comparing the solutions
obtained by GIDEON for data that was sorted against the unsorted data,
performance of the three heuristic for the data sets and the solutions obtained by
the three heuristics using a common unit of measurement. The analyses were
done using two non-parametric tests, Friedman's Test and Paired Group Test [13].
The Paired Group Test (PGT) was used to test the solutions obtained by GIDEON
on sorted and unsorted data (see Table 11.7). The Friedman non-parametric test
(FNT) was used for determining the overall performance of the solutions obtained
by GIDEON aginst Heuristic-1 and Heuristic-2. Table 11.8 summarizes the
results of the Friedman Test.

Problem
Group

Level of significance for
solutions obtained by GIDEON
for sorted data over unsorted data

Level of significance for
solutions obtained by GIDEON
for unsorted data over sorted data

R1 1% -
C1 No significance No significance

RC1 2% -
R2 No significance No significance
C2 - 10%

RC2 No significance No significance

Table 11.7: Results of the non-parametric Paired Group Test comparing the
solutions obtained by GIDEON on sorted and unsorted customers in the data sets.

The solutions obtained by GIDEON were individually compared against the
solutions obtained by Heuristic-1 and Heuristic-2. The Paired Group Test was
used to individually analyze the results obtained by GIDEON against those of
Heuristic-1 and Heuristic-2. In order to prform the test, the solutions obtained by
all three heuristics were converted to a common unit. The data was first expressed
on a common scale and an index based on the mean average savings was
developed to rank the three heuristics. As the minimization of the vehicles is of
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higher priority than the distance, the conversion to a common unit was done
using the following scale:

1 unit of distance saved = 1 unit of cost saved
1 unit of vehicle saved = 100 units of cost saved

Table 11.8 is the individual comparison of solutions obtained by GIDEON
against those of Heuristic-1 and Heuristic-2. Table 11.9 indicates the difference in
the mean savings index between the solutions obtained by GIDEON, Heuristic-1
and Heuristic-2. GIDEON attains significantly better solutions for the VRPTW
than Heuristic-1 and Heuristic-2 for the problems in which the customers are
distributed uniformly and/or have a large number of vehicles.

Problem Group Significance of the performance

R1 Significant at the 1% level
C1 No significance

RC1 Significant at the 1% level
R2 Significant at the 1% level
C2 Significant at the 1% level

RC2 Significant at the 1% level

Table 11.8: Results of the Friedman's test comparing the overall performance of
the solutions obtained by GIDEON against the best solutions obtained by

Heuristic-1 and Heuristic-2.

Level of significance of

Problem
Group

Heuristic-2
over

Heuristic-1

Heuristic-1
over

GIDEON

GIDEON
over

Heuristic-1

Heuristic-2
over

GIDEON

GIDEON
over

Heuristic-2

R1 2% - 0.03% - 5%
C1 No

significance
No

significance
No

significance
No

significance
No

significance
RC1 1% - 1% No

significance
No

significance
R2 10% - 0.04% - 1%
C2 2% 10% - 1% -

RC2 10% - 0.25% - 1%

Table 11.9: Results of the non-parametric Paired Group Test comparing
individually the solutions obtained by Heuristic-1, Heuristic-2 and GIDEON.

For problems in data set C1, when the number of vehicles is increased it led to a
reduction in the total distance traveled. For data sets in which the customers are
clustered, the Genetic Sectoring is unable to form efficient sectors as the
clustering of data leads to premature convergence of the algorithm. In the
GIDEON system the Genetic Sectoring does the meta-level search in obtaining
the customer sectors and the local post-optimization methods move customers
between the sectors to improve the quality of the solution. The meta-level search
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followed by local search allows GIDEON to obtain solutions that are
significantly better than Heuristic-1 and Heuristic-2.

Problem Group GIDEON over
Heuristic-1

GIDEON over
Heuristic-2

R1 220 units 65 units
C1 60 units 25 units

RC1 228 units 102 units
R2 287 units 142 units
C2 -44 units -105 units

RC2 321 units 199 units

Table 11.10: The difference in the mean savings index between the solutions
obtained by GIDEON against those of Heuristic-1 and Heuristic-2.

Table 11.11 lists the mean savings index of the solution obtained from GIDEON
and the Tabu search that was used for conducting the Wilcoxon Rank Signed Test
done to analyze the significance of the solutions. The Wilcoxon Rank Signed
Test is a non-parametric statistical test used for the statistical analysis of
observations that are paired. The Wilcoxon test uses signed ranks of differences to
assess the difference in two locations of the two populations. A one-sided test
with the alternate hypothesis E[GIDEON] < E[Tabu] was tested. The weighted
sum of the two heuristics was 3. The "Wα,n" is the critical region for the test
with α  = 0.05 and n = 5, and for the two heuritics the Wα,n was 3. The null
hypothesis is E[GIDEON] = E[Tabu]. The critical region for the Wilcoxon Rank
test indicates that in only one out of twenty trails would "W" exceed 2. As W is
equal to 3, the null hypothsis is true and no distinction can be made between the
performance of the GIDEON system and the Tabu heuristic. That is the solutions
obtained by the GIDEON system are as good as those obtained by the Tabu
heuristic.

Problem Group GIDEON Tabu Heuristic
R1 2579 2586
C1 1892 1871

RC1 2723 2739
R2 1445 1484
C2 1049 911

RC2 1763 1755

Table 11.11: The mean savings index between the solutions obtained by
GIDEON and the Tabu heuristic.

11.6 Summary and Conclusions
GIDEON performs uniformly better than both the heuristics used by Solomon
and Thompson with the exception of the problem group C2. GIDEON does not
tend to perform well for problems in which the customers are geographically
clustered together and have a small number of vehicles. In comparison to the
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Potvin's Tabu heuristic for solving the VRPTW, GIDEON obtains solutions that
are as good as those of the Tabu search. For data sets in which the customers are
clustered GIDEON does not obtain good solutions. This is to be expected as the
genetic algorithm requires large differences in the fitness values of the
chromosomes to exploit the search space.

This research shows that genetic search can obtain good solutions to vehicle
routing problems with time windows compared to traditional heuristics for
problems that have tight time windows and a large number of vehicles.with a
high degree of efficiency. The adaptive nature of the genetic algorithms are
exploited by GIDEON to attain solutions that are of high performance relative to
those of competing heuristics. This methodology is potentially useful for solving
VRPTW's in real time for routing and scheduling in dynamic environments.
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