
Chapter 1 3

Dipankar Dasgupta1

Department of Computer Science
University of Strathclyde
Glasgow GI IXH, U.K.

Incorporating Redundancy and Gene Activation Mechanisms i n
Genetic search for adapting to Non-Stationary Environments

13.1 Introduction
13.2 The Structured GA
13.3 Use of sGA in a Time-Varying Problem
13.4 Experimental Details

13.4.1 Continuously Changing SDNE Environments
13.4.2 A combination of Stationary and Nonstationary SDNE

13.5 Conclusions

Abstract
This chapter describes the application of a different genetic algorithm —
Structured Genetic Algorithm (sGA) — for tracking an optimum in time-varying
environments. This genetic model incorporates redundancy in chromosomal
encoding of the problem space and uses a gene activation mechanism for the
phenotypic expression of genomic subspaces. These features allow multiple
changes to occur simultaneously, in addition to usual mixing effects of genetic
operators as in standard GAs. In adapting to nonstationary environments, the
extra genetic material provides a source for maintaining variability within each
individual, resulting in higher steady-state genotypic diversity even with
phenotypic convergence of the population in different epoch. Experimental results
reported here demonstrate that sGAs can efficiently keep track of a moving
optimum compared to existing genetic approaches.

1 The author is currently at the department of Computer Science, University of
New Mexico, Albuquerque, NM 87131, U.S.A.

13.1 Introduction
Many real-world applications deal with situations in which the optimal criterion
changes over time (typically with changes in the external environment). Also in
some problem domains, these changes are very frequent and irregular in nature.
When a genetic search is used to solve such a real-time problem, it must find the
current optimum quickly as well as should be able to adapt rapidly in response to
change in the environment. When standard GAs are used for such time-varying
optimisations, once the population converged to an optimum, they lose their
ability to search for a new optimum. Since in a standard GA, phenotypic
convergence generally lead to genotypic homogeneity of the whole population
(unless an explicit mechanism such as sharing, crowding, etc. is used to keep
different subpopulations; that too may not be efficient in a time-varying
situation). So they are not well-suited for non-stationary function optimisations.
Such difficulties are also reported by other researchers [10].

These difficulties of a standard GA are primarily due to the simple chromosomal
representation which can not possess sufficient genetic diversity in the population
to allow the search to continue as environment changes. For a standard GA to
succeed in such a situation, requires multiple correlated mutations to introduce
non-destructive diversity. But in standard GAs multiple directed mutations are
extremely unlikely to result in viable offspring. One possible way to introduce
diversity in a converged population is to increase mutation rate, but that may lead
to random search.

There have been several studies that have addressed the use of genetic algorithms
in which the objective function changes over time. Goldberg and Smith [8]
studied the behaviour of genetic diploidy with dominance mechanisms in adapting
to a two-state response surface. In this representation, two alleles are stored for
each gene but only one is expressed according to some dominance mechanism.
This approach, however, does not appear to scale up to more general cases.

Pettit and Swigger [12] experimented with GAs in a randomly fluctuating
environment, but their study provides limited insights due to the extremely small
population size adopted. Likewise, Krishnakumar [11] used a genetic algorithm
with a very limited population (5 only) to track a rapidly changing environment
in aerospace engineering. In the field of machine learning, genetic algorithms are
also used [9] where the task is to find a learning strategy for one player in a
multi-player game, and the performance (objective function) of the learning player
may change over time due to changes in strategies adopted by the opposing
players.

Cobb [2] has proposed an adaptive mutation mechanism called triggered
hypermutation to deal with a restricted class of continuously changing
environments. This approach monitors the quality of the best performers in the
population over time and increases the mutation rate when performance degrades.
However, other classes of non-stationarity may fail to trigger the hypermutation,
leaving the GA converged in a suboptimal area of the search space.

Grefenstette used [10] a random immigrants mechanism (a replacement policy)
where a percentage of the population is replaced by randomly generated

individuals in each generation. The intention again is to maintain a continuous
level of exploration of the search space, while trying to miniraise the disruption
of the ongoing search. His results with one type of non-stationarity show that the
performance is highly dependent on the replacement rate. But this approach has a
serious drawback in dealing with real-time applications, since the time for a
replacement of individuals and the necessary genetic operations to produce
offspring may take longer than the time of change in the environment. Also there
always remains a risk of losing valuable information during random replacement
of the population members.

The principle behind these methods is to introduce additional genetic variation (or
randomness) in the population as and when needed for adapting to environmental
changes. The above approaches may be good for one or another restricted class of
non-stationarity, but cannot be generalised as is possible with an sGA [5].

The remainder of this chapter is organised as follows: the next section will give a
brief description of the structured GA. Section 13.3 defines a time-varying
optimisation problem which was studied by Cobb [2] with standard GAs. Section
13.4 gives experimental details of the sGA implementation for different versions
of the problem. Finally, some conclusions are made based on experimental
results in Section 13.5.

13.2 The Structured GA
Species adaptation in the changing biosphere provides important guidelines for
understanding the dynamic behaviour of evolutionary systems. Biological
systems during evolution develop successful strategies of adaptation in order to
enhance their probability of survival and propagation. Environmental pressures
on a biological organism can be severe, thus the most effective organisms are
those which are able to adapt most rapidly to changing conditions. A central tenet
underlying our hypothesis is that there must be something special in the structure
of a biological system which enables a great majority of its offspring to be viable
in varying environments. The structured GA encoding appears to be more
biologically-motivated and a possible alternative genetic search approach with
some distinctive features.

The central feature of the Structured Genetic Algorithm [6] is the use of
redundancy and a gene activation mechanism in its multi-level genotype. In
particular, genes at any level can either be active or passive. High-level genes
activate or deactivate sets of low-level genes. Thus the activity of the genes at
any given level, whether they will be expressed phenotypically or not (in a
genotype-to-phenotype mapping), are governed by their higher-level genes. A
two-level representation of the sGA is shown in Figure 13.1. In the sGA,
structural genomes are embodied in the chromosome and are represented as sets of
linear (binary) substrings. The model also uses conventional genetic operators and
the survival of the fittest criterion to evolve increasingly fit offspring.

In an sGA, redundant materials (over-specified encoding information) serve a dual
purpose: they can provide implicit non-destructive diversity at all times during
the search process; since only expressed portions of the chromosome undergo
selection pressure and move toward current optimal state, the unexpressed

portions are neutral, though they experience silent genetic changes. The
representation can also work as a distributed memory of variation within the
population structure. These features allow the model to work efficiently in
environments exhibiting different types of nonstationarity. In effect, this model
provides a mechanism for genetic evolution in which diversity can be maintained
by keeping extra genetic material and controlling their expression while decoding.
In adapting to nonstationary environments, the additional genetic material in an
sGA encoding provides a natural source for maintaining diversity as suited to
different environmental situations. A detailed description of the model with some
empirical experiments were reported in our previous works [4, 5].

(a) A 2-level structure of sGA

a a a1 2 3

aa a aa aaa a
11 12 13 21 22 23 31 32 33

level 1

level 2

(a1 a2 a3 a11 a12 a13 a21 a22 a23 a31 a32 a33) - a chromosome
and

 (0 1 0 1 0 1 0 1 0 1 0 0) - a binary coding

(b) An encoding process of sGA

Figure 13.1: A simple representation of an sGA.

13.3 Use of sGA in a time-varying problem
We considered here a State Dependent Nonstationary Environment (SDNE) where
the state of the environment varies either implicitly or explicitly with the stage
of the search. For the genetic search, a stage is considered as a generation. In this
nonstationary environment, the objective of search is not to find a single
optimum for all time, but rather to select a sequence of values over time that
miniraise or maximise, the environmental evaluations. We have taken the
example from Cobb's experiment [2], where the optimisation of a simple
parabola having one variable in a continuously changing SDNE was used. The
expression for the parabola is

ft(xi) = (xi - hi)2

where ht is the generated target domain value mapping into the optimum at time
t which moves along a sinusoidal path, so that the optimum changes in each
generation. The xi is the current estimate of this domain value by the ith
individual and ft represents the environment at time t. By using a parabola, at
each generation the environment essentially returns the squared error of the
domain estimate from the current optimum, hi. A detailed description of the
problem is given in [2].

13.4 Experimental Details
To specify the working of sGAs more precisely for this example, a two-level
sGA is adopted where high-level bits activate low-level partial solution spaces or
subspaces. The initial population is generated randomly with a partial restriction
on the high-level where a specified number of high-level bits are allowed to be
active according to the low-level mapping bits [4, 5]. Then a local mutation is
used which swaps the position of two high-level gene values. This initialisation
approach is like messy GA's partially enumerative approach where at least one
copy of all possible building blocks of a specified size need to be provided. But
the advantage of our initialisation scheme is that it can avoid both under- and
over-specification problems in decoding. So in each chromosome, first few bits
(the number of bits is a deciding factor like other GA parameters) are high-level
bits which act as a control region to express subspaces at the lower level to form
a candidate solution.

In these experiments, a range of parameter sets (e.g., population size, crossover
and mutation probability, etc.) are employed. For the results reported, a two-point
crossover operator along with the stochastic remainder selection strategy [1] are
used. Each run is allowed to continue for 300 generations and the results are
averaged over ten such runs each with a different initial population.

In experiments here, each individual is encoded with 10 high-level bits where each
high-level bit maps 5-bit subspace at the low-level constituting a chromosome of
length 60 bits (chromosome length = H.L. bits + H.L. bits * L.L. bits). We
have considered a 30-bit solution space for decoding the single variable of the
parabola, so the activation of 6 high-level bits are sufficient for expressing a
candidate solution. In these experiments, we have used a strategy where
individuals with below average fitness undergo a higher (10 times) rate of local
mutation on their high-level in order to increase the frequency of shift in
dominance (expression) among low-level optional subspaces.

13.4.1 Continuously Changing SDNE Environments
In the first set of experiments, we use a continuously moving optimum and the
sGA is applied to track the optimum. In Figure 13.2, two indistinguishable
curves exhibit the best individual performance of an sGA in continually tracking
the moving optimum that follows the sinusoidal path of evolution using a
population of size 200 (same popsize as used in simple GA experiments [2]).
Figure 13.3 shows the performance measure plotted (as a negative log10 scale):
the best individual and average population performance against generation. In this
graph, the higher the value of the best individual performance, the better is the
tracking performance.

When the population size is reduced to half (i.e., 100), no significant performance
difference is observed as evident from the Figure 13.4. This success with smaller
population is because of the genetic variability which exists within each
individual and in the population is sufficient to adapt in this environmental
change [3]. Of course, to achieve this level of performance, the sGA needed more
memory space to keep redundant information as compared to the same size

population in simple GA. On the contrary, increase in the population size of a
simple GA cannot exhibit similar effect, since all its encoded information is
usually involve in every environmental state.

Figure 13.2: Two indistinguishable curves displaying sGA's best-of generation
value perfectly tracking the actual optimum.

Figure 13.3: Performance of the sGA in tracking the moving optimum. This
indicates the function evaluation ('squared error' between the estimate of the

best/average individual and the true value of the time-varying optimum).

Figure 13.4: Performance of the sGA in tracking the moving optimum with
population size of 100. Note that the similar performance is obtained with only

half the population used by Cobb (1990) [2].

In both cases, the best performance varies between the order of 10-4 and the order
of 10-7, this higher value exhibits the robustness of structured GAs to track the
problem of nonstationarity. Moreover, the lower value of the average performance
measure implies the amount of diversity which is sustained in the sGA
population at different time during search.

The results with simple GA experiments, reported by Cobb [2]2 were always

below 10-5 when two different (fixed) mutation rates 0.001 and 0.5, as shown in
Figures 13.5 and 13.6 respectively. However, a comparable performance was
obtained with an adaptive mutation scheme, Figure 13.7.

In Figures 13.8 and 13.9, four different sine wave frequencies (which implies
different rate in environmental change) are tested with two sets of GA parameters.
The best-of-generation performance is almost similar in all cases which implies
that the genetic variability that exists in the sGA population can easily cope with
both slow and rapid environmental changes. In other words, as the frequency
increases, the optimum changes rapidly following a sinusoidal path. Unlike
Cobb's method which has to monitor performance and alter the mutation rate, the

2 The graphs are reproduced by permission from the author [2].

sGA tracks the changing environment more accurately with a fixed rate of
mutation. It is to be noted that though we have used higher mutation rates to
below-average performers (individuals) on their high-level bits in order to express
optional subspaces by a single atomic change, such mutations (effect of
simultaneous multiple bit changes) are not possible with a simple GA
representation. It is observed that the performance of the algorithm slightly varies
with the increase in frequency of sine wave, which can be compensated by
increasing mutation rate, but the same mutation rate can maintain the
performance level higher than simple GA's for a wide band of frequencies.

Figure 13.5: Simple GA performance with similar low mutation rate as used
with sGA in tracking moving optimum (Cobb, 1990) [2].

Figure 13.6: Performance of the simple GA with high mutation rate in tracking
moving optimum (Cobb, 1990) [2]. Note: Mutation rate used here is more than

200 times higher than that used in sGA.

Figure 13.7: Performance of the simple GA using adaptive mutation (Cobb,
1990) [2]. Note: Though the performance improves, but it required precise control

of mutation rate.

Figure 13.8: Performance of sGAs in function environments with changing
optimum in sinusoidal path using different values of frequency.

13.4.2 A combination of stationary and nonstationary SDNE
Next set of experiments considered a combination of stationary and nonstationary
SDNE, where the environment periodically remains stationary at its current value
of ht, while maintaining continuity. As an example, wc have considered ht to be
remained constant from generation 75 to 125 and again from generation 225 to
300 (see ref. [2] for details).

Figure 13.9: Performance of sGAs in function environments with changing
optimum in sinusoidal path using different values of frequency. The higher the

frequency more rapid the environmental change.

Figure 13.10 displays the tracking ability of an sGA in a combined stationary and
nonstationary environment. The best-of-generation and average performance is
shown in a negative log scale in Figure 13.11. The graphs show that an sGA
performance improves when the environment remains stationary, regardless of
preceding or following nonstationarity periods. Also during periods of
nonstationarity, the performance varies depending on the rate of change in the
environment for a given fixed rate of mutation. Particularly, for a higher
frequency sine wave (e.g., 0.25), an increased rate of mutation is necessary to
improve the performance at nonstationary periods, but performance degrades
during stationary period in such case when constant mutation rate is used. In order
to alleviate the performance, an elitist strategy is used where a significant
improvement in performance is observed during the stationary period where a
slight improvement is also noticed in nonstationary periods as shown in Figure
13.12.

13.5 Conclusions
This paper presented the application of structured GAs in environments having
different degrees of non-stationarity. In these problem environments, the
structured GA encoding worked as a diversity preserving system which could
continually track both fast moving optimum and the optimum which changes in
an interval, using a lower rate of mutation compared to simple GA approaches.

Figure 13.10: sGA's best-of-generation and the actual optimum are
indistinguishable in each generation.

Figure 13.11: Performance of the sGA in finding the optimum in a combined
stationary and nonstationary SDNE.

Figure 13.12: Performance of the sGA in a combined stationary and
nonstationary SDNE when elitist strategy is used.

To summarise the performance of an sGA as compared to Cobb's simple GA
approaches in this (SDNE) problem domain:
Cobb [2] used different mutation dependent strategies with simple GAs for
solving SDNE problems and better results were found using an adaptive mutation

strategy. The main role of Cobb's adaptive mutation is to introduce diversity
(randomness) in the population whenever needed. For example, if the time-
average best performance was improving then the mutation rate was kept at 0.001
otherwise higher mutation rate of 0.5 was used. The success of such strategies
with simple GAs is solely dependent on the precise control of mutation rates and
the correct timing of triggering by the external process monitoring the
performance, to get any beneficial effect. The performance graphs of sGA
experiments show that a constant (lower) mutation rate can produce better results
than that of simple GAs with different mutation schemes. These sGA results
were obtained without any fine tuning of sGA parameter set. In particular, the
amount of redundancy incorporated in the sGA encoding here (such as number of
high level bits and low level mapping bits) are chosen arbitrarily and need further
investigation to find an optimal set of values.

In the structured genetic approach maintenance of variability is an inherent
characteristic of the model. Since it carries optional sub-structures (partial
solution spaces) in the chromosome which can be combined in different ways
according to the activation pattern of high-level control bits. Also these sub-
structures usually maintain diversified information (different bit patterns) which
compete for dominance at different environmental states. Thus the model can
distribute resources of gene structures among different environmental states
instead of dedicating all the structures to each state as in a standard GA. As the
implicit diversity can be built into the population of an sGA, it can easily keep
track of a number of environmental states changing over time.

We also noted that in comparison to the sGA, the recent mGA model [7] does not
have the ability to adapt in changing fitness landscapes once it converges to a
global optimum, since the unexpressed portion of the variable-length mGA string
has no correlation with its expressed portion. In other words, redundancy if it
exists at all after convergence in a mGA, is unlikely to provide sufficient
information for adapting to environmental change, unless additional strategy is
incorporated [7], similar to the diploidy and dominance mechanism as used with
simple GA [8].

Our previous study [5] shows that the single elegant sGA mechanism can also
work as long-term memory by preserving and retrieving more than two temporal
optimal solutions in a repeated non-stationary environment. We conclude that use
of a more biologically motivated genetic encoding (as in sGA) can handle
different types of nonstationarity more efficiently than the existing approaches
with a standard (canonical) GA.

Acknowledgement
The author is grateful to Professor Douglas R. McGregor for his encouragement
in carrying out this work. The author would like to thank Helen G. Cobb for her
constructive comments on the draft version of the report and giving permission to
reproduce some of her results for comparison purpose.

References
[1] L.B. Booker. Intelligent behavior as an adaptation to the task environment.
Ph.D. thesis, Computer Science, University of Michigan, Ann Arbor, U.S.A,
1982.

[2] Helen G. Cobb. An investigation into the use of hypermutation as an
adaptive operator in genetic algorithms having continuous, time-dependent
nonstationary environments. NRL Memorandum report 6790 AIC-90-001, Naval
Research Laboratory, Washington, D.C. 20375-5000, December 1990.

[3] Dipankar Dasgupta. Tracking a moving optimum using the structured genetic
algorithm. In Proceedings of Seventh Annual Florida Artificial Intelligence
Research Symposium (FLAIRS-94), pages 366-370, May 5-7 1994. Florida,
U.S.A.

[4] Dipankar Dasgupta and D.R. McGregor. A Structured Genetic Algorithm:
The model and the first results. Technical Report NO. IKBS-2-91, 1991.
Presented at AISB PG-Workshop, January, 1992.

[5] Dipankar Dasgupta and D.R. McGregor. Nonstationary function optimization
using the Structured Genetic Algorithm. In Proceedings of Parallel Problem
Solving From Nature (PPSN-2), Brussels, 28-30 September, pages 145-154,
1992.

[6] Dipankar Dasgupta and Douglas R. McGregor. A more Biologically
Motivated Genetic Algorithm: The Model and Some Results. In Cybernatics and
Systems: An International Journal, 25(3):447-469, May-June 1994.

[7] Kalyanmoy Deb. Binary and Floating-point Function Optimization using
Messy Genetic Algorithms. Ph.D. thesis, Dept. of Engineering Mechanics,
University of Alabaton, Tuscaloosa, Alabama, U.S.A., March 1991.

[8] David E. Goldberg and Robert E. Smith. Nonstationary function optimization
using genetic algorithms with dominance and diploidy. In Proceedings of Second
International Conferance on Genetic Algorithms., pages 59-68, 1987.

[9] J.J. Grefenstette, C.L. Ramsey, and A.C. Schultz. Learning sequential
decision rules using simulation models and competition. Machine Learning,
4(5):137-144, 1990.

[10] John J. Grefenstette. Genetic Algorithms for changing environments. In
Proceedings of Parallel Problem Solving From Nature (PPSN-2), Brussels, 28-
317 September, pages 137-144, 1992.

[11] K. Krishnakumar. Micro genetic algorithms for stationary and non-stationary
function optimization. In SPIE, Intelligent Control and Adaptive Systems, pages
289-296, 1989.

[12] K. Pettit and E. Swigger. An analysis of genetic based pattern tracking and
cognitive based component tracking models of adaptation. In Proceedings of
National Conference on AI (AAAI-83), pages 327-332. Morgan Kaufmann, 1983.

	Practical Handbook of GENETIC ALGORITHMS: New Frontiers, Volume II
	Table of Contents
	Chapter 13: Incorporating Redundancy and Gene Activation Mechanisms i n Genetic search for adapting to Non-Stationary Environments
	Abstract
	13.1 Introduction
	13.2 The Structured GA
	13.3 Use of sGA in a time-varying problem
	13.4 Experimental Details
	13.4.1 Continuously Changing SDNE Environments
	13.4.2 A combination of stationary and nonstationary SDNE

	13.5 Conclusions
	Acknowledgement
	References

	© 1995 by CRC Press, Inc: © 1995 by CRC Press, Inc.

