
1

Chapter 2

Michael Levin

Cell and Developmental Biology Dept.
Harvard Medical School
Boston, MA

mlevin@husc8.harvard.edu

Locating Putative Protein Signal Sequences

Abstract
2.1 Introduction
2.2 Implementation
2.3 Results of Sample Applications
2.4 Parametrization Study
2.5 Future Directions

Abstract
This chapter presents an application of genetic algorithms to a problem in
molecular biology. Many proteins occurring in cells participate in biochemical
events such as degradation, chemical modification, directional transport, etc. It
has been shown that in certain cases, a string of amino acids serves as a specific
signal; thus proteins which carry this sequence within their primary structures
participate in some molecular event, while proteins lacking this sequence do not
(the endoplasmic reticulum retention signal "KDEL" is a good example). Finding
the sequence of a specific possible signal based only on the primary structures of
a group of proteins thought to carry it is a very difficult task. No good algorithm
currently exists for locating brand new signals. A genetic algorithm is described
here which is able to discover such sequences. This algorithm is able to search
the enormous state space of all possible signals in reasonable time, and locate
likely signal sequences (which can then be tested empirically). The algorithm can
also be used to find signature sequences in related proteins. Because genetic
algorithms are domain independent, a parametrization study is also presented,
which shows optimal values of certain constants for this specific task.

2

2.1 Introduction
Many proteins important in cell function participate in various processes
(retention in or targeting to specific organelles, chemical modification,
degradation, secretion, etc.). In certain cases, the signal which determines exactly
which proteins participate in a given process is a short string of amino acids
within the primary structure of the proteins. The endoplasmic retention signal,
KDEL, is a good example of this (Pelham, 1990).

So many examples of signals have been found (Bairoch, 1991) that when one has
several proteins (called the "in" group), all of which undergo some particular
event, it becomes tempting to search for a sequence which might serve as the
recognition signal. Once a potential sequence has been found (one that occurs
only in that group of proteins), the hypothesis can be tested by artificially
grafting the signal onto a protein which doesn't normally participate in the event.
If the protein is seen to then undergo the event, the hypothesis is confirmed.

One problem with this process is that given the primary structures of several
proteins, it is a very difficult task to come up with a potential signal sequence; if
the proteins are of significant length, it is very hard to identify a common (but
unique to the group) region by eye, especially since certain amino acid homology
rules and groupings may apply. If one has a pretty good idea what this signal
might be, simple pattern matching, weight matrix analysis, or discriminant
analysis can be used. However, there are no good methods for easily finding a
completely new signal.

This problem reduces to the task of finding the longest string which matches
optimally somewhere within all members of the functionally-defined "in" group,
and does not match a random set of proteins not belonging to the group (the
"out" group). A closely related problem is to find a signature sequence which can
be used to tell certain proteins apart from similar ones (such as the "A-G-L-x-F-
P-V" signature for histone H2B, Wells, 1989). This task thus touches on features
of machine learning, pattern recognition, classification systems, and feature
abstraction.

Considering the fact that the data is noisy (i.e., one or more of the "in" group
proteins may not carry the signal, but participate in the event of interest for other
reasons), and the fact that the signal sequence may not be 100% conserved among
all proteins, the search space of all possible signals of a given length (usually 3-
10 amino acids long) is a very difficult one. If a very fast computer is available,
and one is willing to restrict the search to signals less than about six amino acids
long, an exhaustive search of all possible short strings may be feasible. However,
as the length of the proteins involved grows, and one wants to look at signals
which may be somewhat longer, this quickly becomes impractical with respect to

the time involved to perform the search (the time required is proportional to 30N

where N is the maximum number of characters in the signal).

A set of algorithms which has recently been shown to be able to find solutions in
difficult search spaces are known as "genetic algorithms" (Goldberg, 1989, Davis,
1991, Holland, 1992, Koza, 1992). These domain-independent algorithms

3

simulate evolution by retaining the best of a population of potential solutions
and mutating these to arrive at the next generation's population. This process is
repeated until a solution of sufficient quality is found (or computational resources
are exhausted). The algorithms have proven to be robust and effective for a wide
variety of problems, such as symbolic regression, process control, generation of
emergent behavior, classification, and pattern recognition (see Koza, 1992 and
references therein). GAs have also been used in molecular biology (Dandekar,
1992).

This approach can be used to locate likely candidates for functional protein
signals (De La Maza and Tidor, 1992, used a very similar problem to study the
effects of Boltzmann selective pressure). This is done by performing random
mutation and fitness selection over a population of candidate signal sequences.
Each individual in this population is a string of amino acids of some length. Its
fitness is proportional to how well this sequence matches the members of the
"in" group, and inversely proportional to its match with the "out" group. Genetic
algorithms are used, rather than the more general technique of genetic
programming because in this case the map from discrete character set genome to
the possible solution space is a very natural one. This algorithm is shown to
effectively and easily locate potential signal sequences with no initial data other
than the functional grouping of proteins and their primary structure. Since the
genetic algorithm approach is domain-independent, a parameterization study is
performed, to determine the optimal parameters for locating such sequences.

2.2 Implementation
The algorithm is fairly simple, and is easily coded in C. Each member of the
population is a string (called a "schema") of some length (minimum length is
usually set to 3, maximum length to 10) over the alphabet consisting of the
single letter codes for amino acids, plus the symbols _* (the wildcard, or "any
amino acid" symbol), a ("an acidic amino acid"), b ("a basic amino acid"), n ("a
neutral amino acid"), h ("a hydrophobic amino acid"), p ("a polar amino acid"),
and c ("a charged amino acid"). This string can be directly compared to any
protein's primary structure. Thus for example, the hypothetical string "TY*Sa"
would match a protein which contained a threonine, followed by a tyrosine,
followed by any amino acid, followed by a serine, followed by any acidic amino
acid. Additional symbols can be added (such as the numbers 0 through 9) which
can stand for certain other homologies (for example, 0 may stand for "either S or
A here"). The string is the member's genetic material — one chromosome.

Several operators are used. First, a fitness function has to be defined, which can
evaluate the worth (i.e., success at differentiating the "in" proteins from the "out"
proteins) of any individual. This is returned as a scalar floating point number,
which allows unambiguous ordered ranking of all individuals. This number is
based on parameters designed to take into account several desirable qualities of a
candidate solution; higher numbers indicate better schemata. The fitness function
used in this implementation, when applied to a schema S, returns a number
which is equal to:

k1.knowledge(S) + k2.size(S) - k3.vagueness(S) (2.1)

4

where knowledge(S) is equal to:

match_ins(S) - k4.match_outs(S) (2.2)

match_ins(S) determines how well schema S matches the proteins in the "in"
group. match_outs(S) does the same for the "outs" group. The degree of match is
computed as the sum of all matches to proteins in a group, divided by the number
of members in the group. The degree of match to a given protein is defined as the
number of matching characters (at the best-matching position within the protein)
divided by the length of the schema. The match to the "out" group is subtracted
to ensure that the best individuals are those which match the "out" group least.

size(S) determines the effects of the schema size. In general, the value of size(S)
should be proportional to the length of the schema, because it is better to have
the complete signal sequence than a part of it. It may, however, include special
nonlinear terms to punish schemata that are too long.

vagueness(S) determines how specific the schema is. It is proportional to the
number of non-specific symbols occurring in S (such as * etc.). This term is also
subtracted in equation 1 because it is best to have as specific a sequence as
possible (while still matching optimally).

The constants k1 through k4 are parameters that the user can adjust for specific

effects. Normally k1 >> k2, k3 because the most important thing is for the

schema to differentiate between the "in" group and the "out" group. However, the
other terms ensure that if two individuals have similar matching ability, the more
specific and longer ones will be considered more fit. The constant k4 can be

changed to control how specific the signal is to the "in" group. It is usually less
than 1.0 because even a signal that occurs somewhat in non-belonging proteins
can be useful if it always occurs in belonging ones.

Once the most fit members of a population are identified, their genotypes are used
to construct the next generation. Two possible operators are mutation, and
crossover. A single mutation event performed on a schema S (asexual
reproduction), as used in this algorithm, consists of choosing at random among:
deleting a symbol at a random position within S, adding a random symbol
somewhere within S, or changing a random symbol within S to some other
random symbol. Appropriate safeguards are used to ensure that schemata don't
become too small or too large. Other than that, the mutation is completely
random, with no foresight as to the effects on its performance. Crossover consists
of picking two individuals, and producing two new ones by swapping random
parts of the parents' genome.

Crossover was used in the initial trials of these experiments, but resulted in
premature convergence of the population on suboptimal solutions (data not
shown). Thus, all results shown in this chapter utilize simple mutation only.
These results are consistent with those of Fogel and Atmar, 1990, who conclude

that complex genetic operators such as crossover and regional inversion do not
compare favorably with simple mutation (unlike Holland, 1975 and Koza, 1992,
who claim that crossover produces better results than mutation).

The control flow of the algorithm is shown in Figure 2.1. After the parameters
are set, the "in" and "out" groups are read in from disk. The "out" group should
ideally consist of proteins which are related to the proteins in the "in" group, but
known (from empirical evidence) not to participate in whatever event functionally
defines the "in" group. Alternatively, the "out" group can consist of randomly
chosen proteins, or even of random sequences of amino acid symbols.

An initial random population is then created. The population size is the parameter
P1 — this is what determines how many solutions the algorithm is working
with at any time. The bigger the value of P1, the longer it takes to evaluate each
generation; however, higher values of P1 make it more likely that a good
solution will be found. Typical values of P1 can be from 300 to 1000. The user
can, at this point, seed the initial population with several initial guesses. This
can be used to improve a guess obtained by other means, or to help speed up the
search when some of the signal is known, but it is not a good practice in general
because it can cause the search to prematurely converge on some solution and
ignore one which may turn out to be better.

Evaluate each member of the population; sort the
members by fitness, and retain only the top ones.

Collect statistical data on the population.

Initialization: set paprameters, load 'in' and
'out' sequences, load population seeds if

any, create random population

Acceptable
schema found?

Print out the top ones
with their fitnesses,

and quit

Yes

No

Fill in population with the
best sequencees, and

mutants of the best ones.

If the population is too homogeneous,
replace very common schemas with

random ones.

Figure 2.1: The genetic algorithm flow of control.

6

Then, each individual is evaluated according to the fitness function, and the top
P2 schemas are chosen. P2 is usually between 10% and 70% of P1. Too high a
value of P2 results in slow convergence, while too low a value may cause
premature convergence due to early elimination of potentially good schemata. It is
important to note that evaluating the fitness of a given individual is the most
computation-intensive step in this algorithm. As the population homogeneity
begins to rise, a simple trick can be used to cut down the evaluation time (which
can be critical, when the "in" group is large). This method takes advantage of the
fact that if more than one schema in the population have identical sequences, only
one has to be evaluated, and its fitness can be assigned to all of them. Thus,
previous to evaluating fitnesses, the population is sorted by alphabetical order.
For each schema Sn (n>l) if it is identical to Sn-1, then the fitness assigned to Sn
is simply copied from Sn-1; otherwise, the fitness of Sn is calculated explicitly.

The population is then rebuilt, to consist of mutated copies of the best
individuals, as well as unchanged versions of these individuals. This is "elitist"
selection, and ensures that good schemas are never lost from the population. This
process continues until either an acceptable solution is found, or the time limit
expires. This process can contain several additional features. For example, if the
population homogeneity becomes too high, some copies of the most frequent
individuals can be replaced with random schemas, or mutated heavily in an
attempt to inject variety into the system (the elitist selection ensures that this
cannot decrease the maximum fitness found in the population). The whole
algorithm is summarized by the following pseudocode:

1. Read initial data — in and out groups, parameters N, P, Q, R, S, etc. Place
protein sequence in two-dimensional string array

2. Build up a random population of schemas, or read them in from a file. Place
sequences into two-dimensional string array. Crossover and mutation are
accomplished as string operations (i.e., character and substring substitutions,
deletions, inversions, etc.) on the members of these arrays.

3. Until top fitness is acceptable, or allotted time has expired, do:

A. Computer fitness for each member of the population, by matching its
sequence to each member of the in and out groups. Fitness is calculated as in
Eq. 1 above, using simple string matching.

B. Sort the population. Leave the top n members unchanged. Set the next P
members to strings which arise from crossovers between randomly chosen
members of the N best. The choice is biased to favor crossovers between
dissimilar schemata.

C. Introduce q mutations into the members resulting from crossover, and set
the remainder of the population to consist of mutated versions of the top N
members.

7

D. Compute and plot the top fitness, average fitness, and homogeneity of
population as a function of generation number.

E. Compute total homogeneity of population. If this is higher than an
acceptable level R, then eliminate all but one copy of each individual, and fill
in the rest of the population with crossovers between the remaining
individuals and random schemata.

4. Print out the top S non-identical schemata, their fitnesses, and their locations
within each member of the in group.

In this algorithm, the computational complexity (as measured in the number of
string comparisons per generation) as a function of total protein lengths is O(n).
That is, it increases only linearly with increases in the number of total amino
acids in the in and out groups. However, the total time spent on the search is not
necessarily O(n) because different numbers of total generations are required to find
adequate solutions for different sets of proteins, and because of the stochastic
nature of the algorithm.

2.3 Results of Sample Applications
This algorithm was tested on many different kinds of signals (data not shown).
Two examples are illustrated here in detail. Figures 2.2 and 2.3 show the progress
of the search over time (in generations on the abscissa). Three quantities
(explained below) are monitored; their magnitude is normalized between 0 and 1
(on the ordinate).

The first sample application illustrates how the algorithm finds the KDEL signal
(given the sequences of the following proteins found in the GenEMBL database):
H. vulgare GRP94 homologue, rat immunoglobulin heavy chain binding protein
(BiP), rat calreticulin, and rat protein disulfide isomerase (accession numbers
X67960, M14050, X53363, X02918, respectively). For this run, the parameters
are set as shown in column 1 of Table 2.1. The results of the run are seen in
Figure 2.2. The KDEL sequence is found in 64 generations, which represents
about 2.5 hours of real time on a lightly loaded (average system load during run =
1.05) DecStation 5000 workstation. Interestingly (perhaps), it initially found
other sequences common to these proteins (with 100% fit to each): "EED" and
"EEEa". Once a schema has been found, and determined (empirically) not to be of
interest, others can be searched for by entering this sequence into the "out" group
(to ensure that the search disregards it).

Parameter KDEL Histone signture Default
Population size (P1) 800 800 800

Survival size (P2) 300 300 30%

K1 15 15 15

K2 2 2 2

K3 3 3 3

K4 0.1 0.8 0.1

Table 2.1: Parameter settings for various runs.

8

The second sample application illustrates how this method can be used to find
signature sequences. In this case, the histone H2A signature A-G-L-x-F-P-V
(Wells, 1989) can be found by running H2A variants in the "in" group and the
H2B, H3, and H4 proteins in the "out" group. In this experiment, the "in" group
consisted of sea urchin (P. miliaris) late histone H2A-2, human histone H2A
gene (lambda-HHG55), P. miliaris histone H2A-2.1 gene, and the murine H2A
gene (accession numbers M11085, K01889, M14140, X16495, respectively).
The "out" group consisted of sea urchin (P. miliaris) late histone H2B-2, P.
miliaris histone H2B-2.2 gene, P. miliaris gene for histone H3, chicken histone
H3 gene, A. thaliana histone H3 gene, X. laevis histone H4-I gene, and the newt
histone H4 gene (accession numbers M11088, M14143, VOl140, J00869,
M35387, M23776, M23777, J00954, respectively). For this, the specificity
constant needs to be higher than usual. The constants in this experiment are
given in column 2 of Table 2.1. Figure 2.3 shows that the H2A signature is
found at generation 206. Interestingly, another one is found, which is considered
by the algorithm to be even better (because it doesn't contain any non-specific
characters): LQFPVGR at generation 84.

Several interesting things can be noted from these sample runs. The solid line
shows the fitness of the best individual at each generation. This curve is
monotonic, since the elitist selection ensures the best individuals are never lost.
In these and some other runs (data not shown) the maximum fitness curve is
reminiscent of the punctuated equilibrium hypothesis (Eldredge, 1985) — long
stretches of little change interrupted by sharp improvements. This may be due to
the fact that the mutation rate used here is too low to cause changes in top fitness
over small time periods.

Figure 2.2: Locating the KDEL sequence.

9

A genetic algorithm search was performed with the parameters given in column 1
of Table 2.1. The solid line represents the fitness of the most fit schema at any
generation. The dashed line represents the average length of the schemata at a
given generation. The dotted line represents the homogeneity of the population.

The maximum fitness of the second plot starts out much lower than that of plot
2, since the target string of experiment 2 is more complex, and the average
fitness of a random individual is likely to be lower. The dashed line representing
the average length of all schemata drops quickly to the optimal length. This is
somewhat surprising since the length constant in the fitness function is low, and
it might be expected that the length not be important (and thus not be selected
for) until the fitness becomes quite high and the population converges. The dotted
line represents the population homogeneity (as computed by taking the sum of
the average similarities of each individual to all others in the population).
Interestingly, it is non-monotonic and complex; this is an emergent phenomenon
— there is nothing in the fitness function to directly cause such a curve. Note
that these curves are very different between Figures 2.2 and 2.3, suggesting that
the large-scale population dynamics are different for different instances of this
search problem.

Figure 2.3: Locating the Histone H2A Signature Sequence.

A genetic algorithm search was performed with the parameters given in column 1
of Table 2.1. The solid line represents the fitness of the most fit schema at any
generation. The dashed line represents the average length of the schemata at a

given generation. The dotted line represents the homogeneity of the population.

10

2.4 Parametrization study
With so many variables in this domain-independent algorithm, it becomes
interesting to: 1) determine what combination of settings are optimal for the
protein signal problem, and 2) examine the properties of the algorithm as they
vary with the parameters. For these purposes, a parametrization study was
performed. In all of these studies, the dependent variable was the generation
number in which the desired answer first appeared ("generation of discovery").
The problem set in all cases was to locate the KDEL sequence (using half-lengths
of the proteins given above). All parameters except the one being changed are set
to the values in column 3 of Table 2.1. A study of variation (since the algorithm
is a non-deterministic one) was performed; 20 repetitions of exactly the same
problem and parameters showed that differences in generation of discovery were of
the range ±13 (data not shown). This is to be considered as the significant
difference level for the experiments described below. In all of the figures, the
value shown is the average of 10 repeat runs.

The first part of this study examined the dependence of the algorithm's efficiency
in finding the KDEL sequence on the size of the population used. A population
size of 400 found the solution in 41 generations, while a population size of 1400
found the solution in only 17 generations. Intermediate values of population size
produced intermediate values of generation of discovery. Populations of sizes 300
and smaller did not tend to locate the solution at all (within 2000 generations).
Figure 2.4 summarizes the dependence of generation of discovery on the size of
the population. Clearly it is better to use larger generation sizes. However, since
larger generation sizes also take longer to evaluate, it is interesting to examine
how the time of discovery relates to the generation size. It is important to note
that these times are relative (because they depend on what kind of computer the
tests are run on).

◆

◆

◆

◆
◆ ◆

400 600 800 1000 1200 1400

15

20

25

30

35

40

45

G
en

er
at

io
n

of
 D

is
co

ve
ry

Population Size

Figure 2.4. Dependence of solution rate on population size.

11

A series of genetic search algorithms was performed on the KDEL problem, each
using a different population size (given on the X axis). The other parameters are
set as in the third column of Table 2.1. The generation number at which the
KDEL sequence was found is plotted on the Y axis.

A population of size 400 found the solution in 58 minutes, while a population of
size 1400 found it in 80 minutes. Intermediate population sizes produced
intermediate results. Figure 2.5 summarizes this data, showing a U-shaped
relationship. For small generation sizes, it takes longer to find the solution
because of the large number of generations necessary. For large population sizes,
it also takes longer, because of the computational cost of evaluating large
populations. The optimal value seems to be about 800, which allows the
solution to be found in just 31 minutes.

◆

◆

◆

◆

◆

◆

400 600 800 1000 1200 1400
20

30

40

50

60

70

80

Population Size

T
im

e
of

 D
is

co
ve

ry
 (

m
in

)

Figure 2.5: Dependence of Time to Discovery on Population Size.
A series of genetic search algorithms was performed on the KDEL problem, each
using a different population size (given on the X axis). The other parameters are
set as in the third column of Table 2.1. The time (in minutes) at which the
KDEL sequence was found (relative to start time) is plotted on the Y axis.

12

◆ ◆ ◆
◆ ◆

◆
◆

◆

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

G
en

er
at

io
n

of
 D

is
co

ve
ry

% of Population taken for Next Generation

Figure 2.6: Dependence of Generation of Discovery on Survival Size
A series of genetic search algorithms was performed on the KDEL problem, each
allowing a different percentage of the top individuals to contribute genetic
material to the next generation (given on the X axis). The other parameters are set
as in the third column of Table 2.1. The generation number at which the KDEL
sequence was found is plotted on the Y axis.

The second part of this study examined the role of the number of survivors at
each generation. Since this value in itself does not alter the computation time,
only generation of discovery (not absolute time of discovery) was studied. When
20% of the best individuals are allowed to reproduce at each generation, the
solution can be found in 20 generations. When 90% are allowed, the average is
320 generations. Reproduction values of less than 20% tended not to find the
solution at all. Too few reproducers lead to premature convergence on local
maxima, while too many lead to very slow convergence to the global maximum.
Figure 2.6 summarizes this data, and shows that the optimal tradeoff seems to
occur at a survival size of about 20%.

The final part of this study looked at the role of mutation. In these experiments,
the same problem as above was examined, with varying numbers of mutations in
each offspring. Figure 2.7 summarizes the data, which shows that when each
offspring is subject to between 1 and 256 mutations, the solution is found on
average at the same generation number (around 35). The differences between these
values are not significant, showing (surprisingly) that the algorithm's efficiency
is tolerant to a wide range of mutation incidences.

13

◆

◆

◆
◆

◆
◆

◆ ◆

◆

1 2 4 8 16 32 64 128 256
20

22

24

26

28

30

32

34

36

38

40

G
en

er
at

io
n

of
 D

is
co

ve
ry

No. of Mutations Performed on each Survivor

Figure 2.7: Dependence of Generation of Discovery on Mutation Incidence.
A series of genetic search algorithms was performed on the KDEL problem, each
allowing a different number of mutation events to occur when a top individual
contributes genetic material to the next generation (given on the X axis). The
other parameters are set as in the third column of Table 2.1. The generation
number at which the KDEL sequence was found is plotted on the Y axis.

2.5 Future directions
There are several ways in which this algorithm could be improved. First, it would
easily lend itself to parallelization on a computer such as the Connection
Machine. Immense savings in time would be accomplished by running the fitness
evaluations of each individual in parallel. The algorithm could also be made to
deal better with noise in the experimental data by choosing to disregard a member
of the "in" group if a schema is found which matches all the other members very
well, but does not match it. Other varieties of genetic algorithms (steady-state
populations, demes, etc.) may also produce better results.

Acknowledgments
I would like to acknowledge several helpful discussions with David Fogel.

References
Bairoch A., (1991), PROSITE: a dictionary of sites and patterns in proteins,
Nucleic Acids Res., 19:2241-2245.

Dandekar, T., (1992), Potential of genetic algorithms in protein folding, Protein
Engineering, 5(7): 637-645.

Davis, Lawrence, Handbook of Genetic Algorithms, Van Nostrand Reinhold, NY:
1991.

14

De La Maza, Michael, Tidor, Bruce, (1992), Increased flexibility in genetic
algorithms, in Proceedings of the ORCA CSTS Conference: Computer Science
and Operations Research: New Developments in Their Interfaces, pp. 425-440.

Eldredge, Niles, Time Frames, Simon and Schuster, New York: 1985.

Fogel, D. B., (1990), Comparing genetic operators with Gaussian mutations in
simulated evolutionary processes using linear systems, Biological Cybernetics,
63:111-114.

Goldberg, David E., Genetic Algorithms in Search, Optimization, and Machine
Learning , Addison-Wesley, MA: 1989.

Holland, John H., Adaptation in Natural and Artificial Systems, Univ. of
Michigan Pr., Ann Arbor: 1975.

Holland, John H., Adaptation in Natural and Artificial Systems, MIT Press, MA:
1992.

Koza, John R., Genetic Programming , MIT Press, MA: 1992.

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, NY: 1992.

Pelham, H.R.B., (1990), The retention signal for soluble proteins of the
endoplasmic reticulum, Trends Biochem. Sci., 15:483-486.

Wells D.E., McBride C., (1989), A comprehensive compilation and alignment of
histones and histone genes, Nucleic Acids Res.,17:r311-r346.

	Practical Handbook of GENETIC ALGORITHMS: New Frontiers, Volume II
	Table of Contents
	Chapter 2: Locating Putative Protein Signal Sequences
	Abstract
	2.1 Introduction
	2.2 Implementation
	2.3 Results of Sample Applications
	2.4 Parametrization study
	2.5 Future directions
	Acknowledgments
	References

	© 1995 by CRC Press, Inc: © 1995 by CRC Press, Inc.

