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Abstract
The goal of the work described in this paper is to build a path planner able to
drive a robot in a dynamic environment where the obstacles are moving.

In order to do so, we propose a method, called "ARIADNE'S CLEW algorithm",
to build a global path planner based on the combination of two parallel genetic
algorithms: an EXPLORE algorithm and a SEARCH algorithm. The purpose of
the EXPLORE algorithm is to collect information about the environment with
an increasingly fine resolution by placing landmarks in the searched space. The
goal of the SEARCH algorithm is to opportunistically check if the target can be
easily reached from any given placed landmark.

The ARIADNE'S CLEW algorithm is shown to be very fast in most cases
allowing planning in dynamic environments. Hence, it is shown to be complete,
which means that it is sure to find a path when one exists. Finally, we describe a
massively parallel implementation of this algorithm.
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4.1 Introduction
The goal of this work is to build a path planner able to drive a robot in a dynamic
environment where the obstacles are moving.

Designing a path planner is a central question in robotics research. A review of
the existing approaches can be found in Latombe's book [1]. There are two main
ways to deal with this problem: the global and the local approaches. The global
approaches suppose that a complete representation of the configuration space has
been computed before looking for a path. The global approaches are complete in
the sense that if a path exists it will be found. Unfortunately, computing the
complete configuration space is very time consuming, worse, the complexity of
this task grows exponentially as the number of degrees of freedom increases.
Consequently, today most of the robot path planners are used off-line: the planner
is invoked with a model of the environment, it produces a plan which is passed to
the robot controller which, in turn, executes it. In general, the time necessary to
achieve this is not short enough to allow the robot to move in a dynamic
environment. The local approaches need only partial knowledge of the
configuration space. The decisions to move the robot are taken using local criteria
and heuristics to choose the most promising directions. Consequently, the local
methods are much faster. Unfortunately, they are not complete, it may happen
that a solution exists and is not found. The local approaches consider planning as
an optimisation problem, where finding a path to the target corresponds to the
optimisation of some given function. As any optimisation technique, the local
approaches are subject to get trapped in some local optima, where a path to the
goal has not been found and from which it is impossible or, at least, very
difficult to escape.

The ultimate goal of a planner is to find a path in the configuration space from
the initial position to the target. However, while searching for this path, an
interesting sub-goal to consider may be to try to collect information about the
free space and about the possible paths to go about that space. The ARIADNE'S
CLEW algorithm tries to do both at the same time. An EXPLORE algorithm
collects information about the free space with an increasingly fine resolution,
while, in parallel, a SEARCH algorithm opportunistically checks if the target
can be reached. The EXPLORE algorithm works by placing landmarks in the
searched space in such a way that a path from the initial position to any landmark
is known. In order to learn as much as possible about the free space the
EXPLORE algorithm tries to spread the landmarks all over the space. To do so,
it tries to put the landmarks as far as possible from one another. For each new
landmark produced by the EXPLORE algorithm the SEARCH algorithm checks
with a local method if the target may be reached from that landmark. The
ARIADNE'S CLEW algorithm is very fast, however, we will show that it is a
complete planner which will find a path if one exits. The resolution at which the
space is scanned and the time spent to do so, automatically adapts to the difficulty
of the problem.

Both the EXPLORE and the SEARCH algorithms may be seen as solving
optimisation problems. We first introduce the optimisation technique we are
using, namely, genetic algorithms. We then describe successively in some
details, the SEARCH algorithm, the EXPLORE algorithm and the concatenation
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of both. We finally explain a massively parallel implementation of our method
and present some results proving that using this method we are able to drive a
robot in a dynamic environment. We conclude with a discussion and some
perspectives for future work.

4.2 Principles of Genetic Algorithms
Genetic algorithms are programs used to deal with optimisation problems. They
have first been introduced by Holland [2]. Their goal is to find optimum of a
given function F on a given search space S. For instance, the search space S may

be 2N, a point of S is then described by a vector of N bits and F is a function

able to compute a real value for each of the 2N vectors.

In an initialisation step a set of points of the search space S (called a
"population" of "individuals"), is drawn at random (the "genotype" of each
individual is a vector of N bits). Then, the genetic algorithm iterates over the
following 4 steps until a satisfying optimum is reached (see Figure 4.1 below):

1 Evaluation: The function F is computed for each individual, ordering the
population from the worst to the best.

Figure 4.1. The basic principles of genetic algorithms.

2 Selection: Pairs of individuals are selected, best individuals having more
chance to be selected than poor ones (one individual may appear in different
pairs).

3 Reproduction: New individuals (called "offspring") are produced from these
pairs.
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4 Replacement: A new population is generated by replacing some of the
individuals of the old population by the new ones.

Reproduction is done using some "genetic operators". Number of them may be
used but the two most common are mutation and crossing-over. The mutation
operator picks at random some mutation locations among the N possible sites in
the vector and flip the value of the bits at these locations as represented in Figure
4.2.

Figure 4.2: Mutation operator.

The cross-over operator selects at random a cut point among the N possible sites
in the binary genotype and exchanges the last parts of the two parents vectors as
shown in Figure 4.3.

Figure 4.3: Cross-over operator.

Genetic algorithms have many applications and exhibit very impressive
optimisation capabilities compared to other optimisation techniques especially

when the search space is big (≈2300) and F quite irregular (see [3] for a recent
survey).

Besides their scientific interest as a model of biological evolution, genetic
algorithms have two main technological interests:

1 They are very robust techniques able to deal with a very large class of
optimisation problems.

2 They are very easy to program in parallel and the acceleration obtained by doing
so is considerable (see [4]).

We proposed a parallel genetic algorithm and developed an implementation on a
massively parallel machine based on Transputers (see [5]). This algorithm and the
performances obtained by the parallel implementation have been an  essential
achievement for the success of the work described in this paper.

The principle of this parallel genetic algorithm is described by Figure 4.4. It
consists in one parallel process running for each individual in the population. The
processes are organised in a torus structure where each process has 4 neighbours.
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At each generation all the individuals, in parallel, choose among their 4
neighbours with whom they want to breed and reproduce with the chosen bride.
The parallel genetic algorithm iterates over the following 4 steps until a
satisfying optimum is reached:

1 Evaluation: Evaluate in parallel all the individuals.

2 Selection: Select in parallel, among the four neighbours, the bride with the
best evaluation.

3 Reproduction: Reproduce in parallel with the chosen bride.

4 Replacement: Replace in parallel the parents by the offspring.

Figure 4.4: The principle of the parallel genetic algorithm.

4.3 The Search Algorithm
The purpose of the SEARCH algorithm is to determine if the target τ may be
reached "simply" from a given point π. In order to do so, it looks for fixed length
Manhattan motions in the configuration space starting at π and ending at τ.

Given a system with N degrees of freedom {θ1, θ2, ..., θN}, a Manhattan motion
of length 1 consists in moving each degree of freedom θi successively once by
∆θi. A Manhattan motion of length L is a succession of L Manhattan motions of
length 1 or of LxN elementary motions of a single degree of freedom. Such a
Manhattan motion M is denoted as:

M = ∆θ1
1,∆θ2

1 ,...,∆θ i
1,...,∆θ N

1 ,∆θ1
2 ,∆θ2

2 ,...,∆θ N
L( )
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Let us call τ i
j  the point reached in the configuration space after ixj elementary

motions. Let us call τa
b  the furthest point reached along M before a collision

occurred We are looking for a collision-free Manhattan motion such that
τa

b = τ N
L = τ .

The SEARCH algorithm may be expressed as an optimisation problem for the
parallel genetic algorithm where:

The search space Ss is the set of all Manhattan motions of length L
starting at π.

The evaluation function Fs applied to a Manhattan motion M given a
target τ is defined as follow:

Fs(M,τ)=0 if any τ i
j  of M preceding τa

b  is in the BACKPROJECTIONs
of τ . (The BACKPROJECTIONs of τ is the set of all points of the
searched space from which τ may be reached by a Manhattan motion of
length 1).

Otherwise Fs(M,τ)=||τ - τa
b ||

The SEARCH algorithm tries to minimise the evaluation function Fs(M,τ) over
the search space Ss.

Manhattan motions have been chosen because for the NxL elementary motions of
M, it is possible to compute simply in parallel, both the corresponding τ i

j  and

the collision-free test on the path from π to τ i
j  (see [6]). Furthermore, in a 3

dimensional physical space, the collision-free test itself consists of three
processes running in parallel checking, respectively, that there is no vertex-to-
plan collisions, plan-to-vertex collisions and edge-to-edge collisions. Finally,
each of these three processes may be expressed as the parallel evaluation of AxB
processes where A is the number of elements in the first set of the test (A is the
number of vertices, plans or edges) and where B is the number of elements in the
second set (B is the number of plan, vertices or edges).

The SEARCH algorithm may be used as a planner by itself. It has been used as
such for several applications. Let us describe briefly two of them (a more detailed
presentation may be found in [7]).

The first application is a planner for a planar arm with two degrees of freedom.
By restricting ourselves to two dimensions we can graphically represent the
configuration space and give the reader a better feeling of the method. However,
the proposed method does not make any hypothesis about the number of degrees
of freedom and can be used without modification for arms with a much larger
number of degrees of freedom. Figure 4.5a shows a Manhattan motion in the
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configuration space and the associated "individual" of the genetic algorithm.
Figure 4.5b shows the initial and final configuration of the arm in the operational
space. Figure 4.5c shows the path found in the operational space and Figure 4.5.d
the path found in the configuration space. Finally, Figure 4.5e shows the portion
of the configuration space which has been evaluated. It should be noticed that
only a very restricted part of the configuration is really computed, this is one of
the main explanation of the efficacy of the algorithm and this is why this
algorithm is able to handle planning in dynamic environments.

Figure 4.5a

Figure 4.5b, c, d, and e

The second application is a planner for a holomatic mobile robot. Figure 4.6
shows how the planner behaves in a dynamic environment. Figure 4.6a shows
the initial found path. Figure 4.6b shows the path re-planned after the closing of
the door. The used version of SEARCH has been implemented on a massively
parallel Transputers machine. The planning time for a given path was less than 1
second on a machine of 64 Transputers.

As shown by the two previous examples, the use of SEARCH as a planner is
very interesting. However, it may happen that the genetic algorithm gets trapped
in some local minima. In that case the planner does not find a solution even if
one exists. The SEARCH algorithm is not complete, this is its main drawback.
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Figure 4.6a and b.

4.4 The Explore Algorithm
The purpose of the EXPLORE algorithm is to collect information about the free
space. The EXPLORE algorithm works by placing landmarks in the searched
space in such a way that a collision-free Manhattan path from the initial position
x to any landmark λk is known. In order to learn as much as possible about the
free space the EXPLORE algorithm tries to spread the landmarks all over the
space. To do so, it tries to put the landmarks as far as possible from one another.
Let us call Λ = {λ1,λ2,...λk,...} the set of already placed landmarks at a given
step of the program. It is possible to define the distance between a point α  of the
searched space and the set Λ by D(α,Λ) = Min ||λk - α|| on all landmarks λk ∈ Λ

Figure 4.7 shows how the landmarks spread in the environment.
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The EXPLORE algorithm may be expressed as an optimisation problem for the
parallel genetic algorithm where:

The search space Se is the set of all Manhattan motions of length L
starting from any landmark λk of Λ.

The evaluation function Fe applied to a Manhattan motion M of Se is
defined as follows:

Fe(M)=D( τa
b ,Λ) where, τa

b  is still the furthest point reached along M
baefore a collision occurred.

The EXPLORE algorithm tries to maximise over the search space Se the
evaluation function Fe(M).

Figure 4.8 shows "the ARIADNE'S CLEW": a tree of landmarks allowing to go
about the free space.

Figure 4.8: The ARIADNE'S CLEW

4.5 The ARIADNE's CLEW Algorithm
The purpose of the ARIADNE'S CLEW algorithm is to find a path from a given
point π to a target τ. The ARIADNE'S CLEW algorithm is the following:
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1 - Use the SEARCH algorithm to find if a "simple" path exists between
π and τ.

2- If no "simple" path found by step 1, then do until a path is found
2.1  *  Use EXPLORE to generate a new landmark λ.
2.2  *  Use SEARCH to look for a "simple" path from π to 'τ.

It is interesting to notice that SEARCH may be seen as a backprojection function
for EXPLORE. SEARCH could be called BACKPROJECTIONe because it plays
relatively to EXPLORE the exact same role than BACKPROJECTIONs
relatively to SEARCH. A quite complicated backprojection function indeed,
which usually produces very big backprojection allowing EXPLORE to stop after
placing just a few landmarks.

The ARIADNE'S CLEW algorithm has three very important qualities:

- It reduces to the very fast SEARCH algorithm for most of the cases.

- It is complete, in the sense that if a path exists it will be found (see proposition
2 below).

- It automatically adapts the resolution at which it scans the space to the
complexity of the problem (see proposition 3 below).

Figures 4.9a and b show two complex paths found by the ARIADNE'S CLEW
algorithm.

Figure 4.9a
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Definition 1 : a PATH P from an initial point π to a target τ in an N
dimension metric space is defined as an N-uplet (F1(t), F2(t), ..., FN(t)) of N
continuous functions from [0,1] -> ℜ such that (F1(0), F2(0), ..., FN(0)) are the
coordinates of ~ and (FI(1), F2(1), ..., FN(1)) are the coordinates of τ.

Definition 2: a MANHATTAN MOTION OF LENGTH 1 in an N dimensions
space is defined as an N-uplet M1 = ∆θ1

1,∆θ2
1 ,...,∆θ i

1,...,∆θ N
1( ) where each ∆θ i

1  is

an integer corresponding to the length of the move along dimension i expressed
in some given elementary length unit υ.

Definition 3: a MANHATTAN MOTION OF LENGTH L in an N dimension
space is defined as an

NxL-uplet: ML = ∆θ1
1,∆θ2

1 ,...,∆θ i
1,...,∆θ N

1 ,∆θ1
2 ,∆θ2

2 ,...,∆θ N
L( )  where each ∆θ i

j  is

an integer corresponding to the length of .the jth move along dimension i
expressed in some given elementary length unit υ.

Proposition 1: for any ε > 0, for any path P, it is possible to find υ, L and a
Manhattan motion ML of length L, such that the path P is approximated by ML
with an error less than ε.

Sketch of proof:
- Direct application of the Stone-Weirstrass theorem.

Figure 4.9b

Proposition 2: the ARIADNE'S CLEW algorithm is complete, which means
that, for any given ε > 0, if a path exists from the initial point π to the target τ
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it will find (in a finite time) L and a Manhattan motion of length L ML starting
at π and ending at τ with an error less than ε.

Sketch of proof:
- Proposition 1 insures that such a Manhattan motion ML exists.

- The ARIADNE'S CLEW algorithm searches a discrete finite space.

- The ARIADNE'S CLEW algorithm insures that all the produced Manhattan
motions are different.

Consequently, ML will be produced after a finite amount of time.

In the sequel of this section, three important propositions concerning the
ARIADNE'S CLEW algorithm will be established. However, given the restricted
length of this chapter, only sketches of proofs are proposed.

Remark: In fact Proposition 2 proves that any algorithm producing Manhattan
motions without producing twice the same is complete. This is true either for an
algorithm enumerating the Manhattan motions or for an algorithm drawing
randomly the Manhattan motions (without drawing twice the same). Of course
the ARIADNE'S CLEW algorithm is doing much, much, better than those two.

Definition 4 : for a given ε , let us call the COMPLEXITY OF THE
PROBLEM the minimum number C of identical tiles necessary to do a paving of
the space, the biggest dimension of a tile being equal to ε.

Definition 5: let us call RESOLUTION R the number of landmarks generated
by the ARIADNE'S CLEW algorithm to find a solution.

Proposition 3: resolution R is always inferior or equal to complexity C.

Sketch of proof:
- as long as R < C, two different landmarks may not be in the same tile given
that the ARIADNE'S CLEW algorithm maximises the distance between the
landmarks.

- for R = C, there is exactly one landmark in each tile.

- in that case, there exists a Manhattan motion starting at a distance of π less
than ε (starting at the landmark in the same tile as π) and ending at a distance of
τ less than ε (ending at the landmark in the same tile as τ).

Remark: In practice, experiences prove that R<<C. There are two main reasons
for this. First, most of the time, SEARCH stops EXPLORE after the generation
of just a few landmarks. Second, the ARIADNE'S CLEW algorithm adapts
locally its resolution to the surrounding free space, generating a lot of landmarks
where narrow doors or corridors have to be found and generating just a few of
them when in an open free space.
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4.6 Parallel Implementation
It is possible to design a massively parallel implementation of the ARIADNE'S
CLEW algorithm with 5 embedded levels of parallelism (see Figure 4.10):

1 - At top level of parallelism, SEARCH and EXPLORE may run in parallel.
EXPLORE produces a landmark while SEARCH exploits the previous one.
SEARCH stops EXPLORE as soon as it reaches the target.

2 - Both SEARCH and EXPLORE need to run a genetic algorithm which can be
implemented in parallel as described in Section 2.
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Figure 4.10

3 - Fs and Fe, the evaluation functions of SEARCH and EXPLORE, consist
mainly in testing collision on paths. This may be done by NxL parallel
processes, where N is the number of degrees of freedom and L the length of the
considered Manhattan motions.
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4- Each of these NxL processes may be further decomposed as three parallel
processes testing, respectively, vertex-to-plan, plan-to-vertex and edge-to-edge
collisions.

5 - Finally, each of these tests needs AxB parallel processes where A is the
number of elements in the first set of the test (A is the number of vertices, plans
or edges) and where B is the number of elements in the second set (B is the
number of plans, vertices or edges).

The methodology used to implement this on a parallel machine consists in
writing the application fully in parallel as if there were as many processors
available as the number of processes. Of course, in practice, this is not the case.
However, we use  languages  and  tools (particularly the PAROS parallel
operating system and the PARX communication kernel developed in the
SUPERNODE II project, see [8]) which allows us to conceive a parallel program
independently of the architecture of the target machine.

We implement this on SUPERNODE machine made of 128 Transputers.

4.7 Conclusion, Results and Perspectives
We have presented a general method to search a continuous configuration space.
This method is implemented using a minimisation technique based on parallel
genetic algorithms. We have demonstrated the validity of the method on a set of
complex path planning problems. Finally, we proposed a massively parallel
implementation of the method which permits on-line re-planning.

Our experimental set-up used to test our algorithm for an actual six degrees of
freedom arm is represented on Figure 4.11. Robot I is under the control of the
MegaNode (128 T800 Transputers parallel machine) running a parallel
implementation of the ARIADNE'S CLEW algorithm. Robot II is used as a
dynamic obstacle: it is manually controlled via KALI (KALI is a robot control
software initially developed at McGill University). First we use a CAD system
called ACT which permits precise geometrical description of the arms and
obstacles and which is able to present 3D simulations. We compile this
representation into a special format which is downloaded to the MegaNode. A
final position is then specified to Robot I, the MegaNode quickly (2 seconds)
produces a plan which assume Robot II is standing still, should the position of
Robot II change under manual control, Robot I stops and the MegaNode
(re)computes another path.
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