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Abstract

This chapter investigates Boltzmann selection, a tool for controlling the selective
pressure in optimizations using genetic algorithms. An implementation of
variable selective pressure, modeled after the use of temperature as a parameter in
simulated annealing approaches, is described. The convergence behavior of

                                                
1This chapter is an elaboration of two previously published papers. de la Maza
and Tidor (1992)  describe Boltzmann selection and its application to a problem
in molecular biology, while de la Maza and Tidor (1993)  develop the theoretical
analysis of Boltzmann selection.



 optimization runs is illustrated as a function of selective pressure; the method is
compared to a genetic algorithm lacking this control feature and is shown to
exhibit superior convergence properties on a small set of test problems. An
empirical analysis is presented that compares the selective pressure of this
algorithm to a standard selection procedure.

Then, in order to understand these results in a broader context, an analytical
discussion of selection procedures used in genetic algorithms is presented. A
unified framework for discussing and comparing procedures is developed and used
to compare proportional, Boltzmann, power law, and sigma truncation selection
procedures. Two properties, translation and scale invariance, are defined and
studied for each of these procedures. Selective pressure is investigated for
proportional and Boltzmann selection. It is proven that, for a normal distribution
of individuals in the optimization space, proportional scaling decreases selective
pressure during the course of an optimization run.



5.1 Introduction
A number of problem solving methods in current use are based on paradigms
derived from natural phenomena. Examples include simulated annealing, neural
networks, and genetic algorithms. The first of these is modeled after physical
systems that are remarkably successful at finding global optima by sampling a
potential energy surface as the temperature is slowly reduced [16]. At higher
temperatures, relatively larger excursions over the potential energy surface are
permitted. During cooling, the system evacuates less favorable optima and
becomes trapped in the neighborhood of more favorable ones; the amount of
parameter space sampled effectively decreases with the temperature, and the
system generally converges to very good local solutions. Simulated annealing has
been implemented using both first-derivative methods, in which equations of
motion on the potential energy (or general optimization) surface are integrated to
produce the search path [22], and Monte Carlo methods, which do not require
derivative information [19]. In both cases a temperature parameter is used to
control the optimization. Artificial neural networks, inspired by the highly
interconnected, relatively simple, non-linear processing units found in biological
nervous systems, are proving useful in areas of machine learning and pattern
recognition. Genetic algorithms are based on the same principles of natural
selection that describe the evolution of sizable biological populations over time
scales covering a large number of generations. A fitness function describes the
success of each member of the population in terms of that member's parameters
(genetic makeup or "genes" ); the fitness is a direct measure of an individual's
reproductive potential, which follows in some measure the imperative, "survival
of the fittest" [6]. Mechanisms for creating diversity are also incorporated,
including, but not limited to, mutation and crossover.

Genetic algorithms are atypical in that many solutions are followed in parallel
and these are recombined in search of improved ones.  The evolutionary aspect
provides for the elimination of trial solutions that are relatively unsuccessful, but
a variety of selection criteria are possible. The quality of the overall result and the
computational effort required depend critically on the selection criteria used. Here
we compare the standard proportional scaling method with a new Boltzmann-
based protocol. As an illustration, note that one extreme selection scheme would
allow only copies of the fittest individual to survive. Variability would be
introduced only by mutation (and, if so desired, by crossover of mutant siblings);
this would correspond to a highly parallel Monte Carlo search, but at zero
temperature (i.e., a simple "always improving" optimization). While this might
be efficient to perfect the best optimum once it had been located, it would be
extraordinarily inefficient for most problems at the start of an optimization.  In
fact, for small enough mutational steps in the parameter space, it would lead to
the local optimum closest to the fittest individual in the starting population. This
corresponds to a "zero tolerance" evolutionary system, in which the slightest
advantage of one individual over another results in the loss of the less fit
individual from the gene pool. The other extreme would be an "infinitely
tolerant" environment; i.e., one that permits all individuals to survive to
reproduction, regardless of fitness. If the total number of individuals in the
population is fixed, this corresponds to a random walk in the space with no
preference for optima. Good solutions that are found are likely to be lost to
mutation and crossover. Between these two extremes lies a continuum of



evolutionary tolerance. Early in an optimization, it would be useful to have a
high tolerance, so that the search is carried out over a large portion of the space
(like the initially high temperature used for simulated annealing) and a large
variety of individuals are retained in the population so that, even if they,
themselves, are not of high fitness, they might donate to a crossover that
produces an exceptionally fit individual. Later in the procedure, when the major
optima have been located and partially refined, it would be reasonable to eliminate
the lesser optima and concentrate on refining the better ones, so a lower tolerance
would be useful.

Genetic searches generally converge from a heterogeneous starting population of
random individuals to a more homogeneous population in which the individuals
are nearly identical. Once the population has converged to near homogeneity, a
predominantly local search is performed.  The selection scheme can be used to
exert control over the rate of convergence of the population, as is shown in this
work using a function with multiple optima.

There is a modest literature on methods of controlling the selective pressure in a
genetic algorithm, and some systematic studies have been performed [3,24,1,17].
We feel that it is important [1] to develop methods in the genetic algorithm that
allow specific control of the selective pressure, and [2] to study the best ways of
varying the selective pressure during the course of a genetic algorithm run to
obtain rapid convergence to an optimal solution.

We have implemented a genetic algorithm using such a scheme for varying the
evolutionary tolerance of the environment with Boltzmann scaling. The plan of
the rest of this chapter is as follows. Section 2 describes Boltzmann selection and
compares it to proportional selection on two test problems. Section 3 explores
the scale and translation invariance of several selection procedures and proves a
theorem which might explain why Boltzmann selection outperforms proportional
selection. Section 4 summarizes related work and Section 5 concludes the chapter.
The purpose of Section 2 is to provide the reader with two examples of how
Boltzmann selection can be used to optimize functions. Each step in the approach
to both problems is described in detail so the reader can adapt these methods to
other optimization problems. Section 3 then provides theoretical justification for
the use of Boltzmann selection.

5.2 Empirical Analysis

5.2.1 Framework
This section describes a general framework for defining selection procedures. Here
we use it to define the proportional selection procedure which will be empirically
compared to Boltzmann selection on two test problems. Later, in Section 3 this
definition will be used to prove properties about several selection procedures.

Definition 2.1 defines a selection procedure in terms of four functions. To
determine the number of copies of each individual in one generation that will be
propagated into the next, the four functions are composed as follows:
W(P(F(U(X)))), where U is the problem dependent objective function, F is called



the fitness function, P usually produces a vector, R
→

, of probabilities multiplied
by the number of individuals in the population, and W is usually the roulette
wheel procedure [10] . The values produced by U are often called raw fitnesses. In
some sense, this choice of functions is arbitrary; however, we feel that it captures
our intuitions about the salient components of selection procedures. Notice that
the fitness function used by the genetic algorithm, F, is not always the same as
the function to be optimized, U. The key transformation, F(U(X)) produces the
fitnesses from the objective function. Frequently this involves simply adding a
constant so the fitness function is positive. Defining proportional selection,
which is one of the most widely used selection procedures [15,10], will give an
intuitive understanding of the definition.

Definition 2.1 We define a selection procedure to be a quadruple (W, P, F, U)
where

W:R
→

→ I
→

P:R
→

→ R
→

F:R
→

→ R
→

U:X → R
→

and where X is a population, R is the set of reals, and I is the set of integers.

Definition 2.2 defines proportional selection.  Note that the transformation from
objective function to fitness is the identity function. The P used here is what
gives proportional selection its name.  This P is used in many selection
procedures, including proportional selection, power law selection [9] , and sigma
truncation [8] . These other procedures are all different, however, because they use
different functions for F. While these selection procedures all proportionally scale
the fitness function, traditional proportional selection is the only one that
proportionally scales the objective function. In Section 3, we will briefly
consider two other selection procedures, rank selection [3]  and tournament
selection [4], that are substantially different.

Definition 2.2 The proportional selection procedure is:

U(X ) is the problem dependent objective function

F(R
→

) = R
→

Pi (R)
→

= R
→

i

R
→

W (R
→

) is the roulette wheel procedure [12]



where the notation Pi is used to indicate the ith element of P and R
→

 is a scalar

equal to the average of all of the elements in R
→

in the current generation.

This high-level description leaves out some implementation details which are
specified in the Lisp code listing in Figure 5.1.

5.3 Introduction to Boltzmann Selection
Having described proportional selection in terms of our definition, we now turn
to an explanation of Boltzmann selection.

In an equilibrated simulated annealing ensemble, the probability of visiting a
point in optimization space, Xj, is,

P(X j ) = e
−u(Xj )/T

e−u(Xi )/T
i∑

 

where the minus sign in the exponent is necessary because a minimization is
performed, T is the temperature, the numerator contains the Boltzmann weighting
term, and the denominator is a normalization factor. The Boltzmann function has
the property that at higher temperatures the system visits more of phase space,
whereas at lower temperatures the probability of visiting points more unfavorable
than the global minimum is lower. We have implemented an analogous equation
in the selection step of our genetic algorithm. Definition 2.3 specifies Boltzmann
selection (not to be confused with Boltzmann tournament selection, which is
defined in [11]). The T parameter in the definition is a variable that corresponds to
evolutionary tolerance (analogous to temperature in simulated annealing) and the
plus sign is changed to minus when minimization, rather than maximization, is
desired.

(defun  Boltzmann-selection  (individual-list  temperature)
(let,

((beta  (/  temperature))
(get_exp  (mapcar  #(lambda  (anindiv)

(list
(exp  (*  beta  (first   anindiv)))
(second  anindiv)))
individual-list))

(total  (reduce  #'+  (mapcar  #'first  get_exp))
(boltzmann_fitness

(mapcar  #'(lambda  (anindiv)
(list
(/  (first  anindiv)  total)
(second  anindiv)))

get_exp)))
(roulette-wheel  boltzmann_fitness)))



Figure 5.1: Implementation of Boltzmann selection in Lisp. This procedure
implements the fitness function, F, of Boltzmann selection. The two inputs to
the Boltzmann-selection procedure are a list of individuals and the temperature.

Each element of the list of individuals is itself a list with two components. The
first component is Ui(X) and the second is the genotype of the individual (Xj).
The procedure ends by calling the roulette-wheel procedure which selects
the individuals that will be propagated into the next generation. This roulette

wheel function should take as input a list each of whose elements is a list of two
components. The first component is Pj(X) and the second component is the

genotype of the individual (Xj). The function of this roulette wheel procedure is
identical to the one used in proportional selection and the same code could be used

for both. The Lisp code given here has been tested on a Sun SPARCstation
running Lucid Common Lisp (version 4.1) and Austin Kyoto Common Lisp

(version 1.530).

Definition 2.3 The Boltzrnann selection procedure is:

Fi (U(X )) = eUi (X)/T     

and U,  P, and W are defined as in proportional selection.

The Boltzmann formulation provides a number of attractive features.  The result
of the selection step is independent of overall translational shifts in the
optimization surface. Multiplying the optimization surface by a constant, so that
U'(X) = cU(X), which corresponds to changing the units in which U(X) is
measured, is also invariant so long as the parameter, T, which has the same units
as U(X), is similarly scaled. Moreover, there is no requirement that the
optimization function be non-negative, as there is with proportional selection,
since the exponential provides an appropriate transformation.  The proof of the
translational invariance of Boltzmann selection will be given in Section 3.

5.3.1  Experiments with Boltzmann Selection
In this section we first describe two model problems used to compare Boltzmann
and proportional scaling, we then explain how a tolerance schedule for the
Boltzmann GA was chosen and present comparative results showing faster
convergence for the Boltzmann GA. Finally, we provide an empirical analysis
that illustrates that a genetic algorithm with proportional scaling increases, rather
than decreases, evolutionary tolerance as the point of completion nears (contrary
to what one might wish).

5.3.1.1           Description         of       Model      Problems
Molecular Biology Problem.  This section describes a problem, inspired by
molecular biology, in which a pattern must be built that distinguishes between
functional and non-functional protein sequences.

A database of instances, composed of the twenty letters used to represent the
twenty amino acids, is divided into positive and negative classes. A random
pattern is generated and the same pattern is embedded in a random location in all
of the positive instances. The goal is to find this pattern or an acceptable



substitute. In addition to containing any character that can appear in the instances,
the substrings, also called individuals, can contain a "don't care" symbol, which
matches any character.

A typical database is shown in Table 5.1. All of the positive instances contain
the substring RIEY while none of the negative instances do. Each database has
ten instances, each having a 0.5 probability of being in the positive class.

                  Instance                                      Class
K D G R W E G G G H W V M A R M negative
N H I T R H Y V Q P C C C Y D K negative
T I C N V S D Q W L F F K L W S negative
E E P S R I E Y T I M G I E V T positive
V P Y K P C P K H S L S G A F K negative
R I E Y R W P V K V R H Q N Y G positive
V A H R C K N W Q M T W I T H Q negative
T L Q F Y K E N D L T K C G L K negative
R C W Y K N A Y I G Q Y V C P H negative
G V M Q G T R I E Y Y F F C G S positive

Table 5.1: Typical database. Each instance
has sixteen letters. The instances in the
positive class all contain the sequence

"RIEY".

The optimization function, U(X), is a measure of the difference between how well
an individual matches the positive instances and how well it matches the negative
instances. The score of individual Xj is calculated using,

U j (X ) = 1

P
max(match(X j , Ik )) − 1

N
max(match(

Ik ∈N∑
Ik ∈P
∑ X j , Ik ))

where I is the set of all instances, P is the subset containing |P| positive
instances and N is the subset containing |N| negative instances. The matching
function returns a list of numbers that indicate how well an individual matches
each substring of an instance. A point is given for each character that correctly
matches and half a point is given for the "don't care" symbol. For example, the
individual *INE, when matched against the instance THISISFINE, returns 0.5
when matched against THIS; 0.5 when matched against ISIS; and 3.5 when
matched against FINE.

Both the Boltzmann and proportional GAs shared the following properties. There
were three recombination operators: crossover, mutation, and shift. The crossover
operator was a traditional l-point crossover. Mutation was accomplished by
randomly switching exactly one character in an individual to another character.
The shift operator performed a cyclic permutation. To create the next generation
from the present one, first a selection step (either Boltzmann or proportional



selection) was performed, creating generation i + 1/2 from generation i. Each of
these individuals was examined in turn and one of the three operators was chosen
(at random in the ratio crossover:mutation:shift of 2:1:1) and applied to create an
individual for generation i + 1. In the case of crossover, an individual in
generation i + 1/2 was crossed over with any of the individuals in that generation
(including itself, producing the identity transformation) with equal probability.

The shift operator was introduced because many runs converged to a local
optimum that was a cyclic permutation away from the global optimum (correct
answer). With mutation and crossover alone, the rate of moving from the local
optima to the global optimum is negligible because it requires crossing deep
valleys. The cyclic permutation shift operator crosses these valleys in a single
step.

The mutation rate (25%) seems deceptively high. For individuals with eight
characters, each character was mutated with an average probability of 3.125%. If
the twenty-one characters are represented as bits, then approximately 4.4 bits are
needed to represent each character. Thus, the mutation rate per bit is
approximately 0.7%, which is similar to that of other genetic algorithms.

F2 Function. Deb and Goldberg's F2 function [9] is:

F2(x) = sin6 (5πx)exp 2 ln 2(
x − 0.1

0.8
)2





On the interval [0.0, 1.0], F2 has five peaks, each one smaller than the previous
one (see Figures 5.4, 5.5, and 5.6).

Individuals for both the Boltzmann and proportional GAs were composed of three
decimal digits and represent a value between 0.000 and 0.999 (inclusive). The
optimization function was simply the value of F2 for the x value encoded by the
individual. The population consisted of 100 individuals. The 1-point crossover
rate was 90% and the mutation rate was 10%. The mutation operator added a
uniform random number between 0.1 and -0.1 to the individual. To create the
next generation from the present one, first a selection step (either Boltzmann or
proportional scaling) was performed, creating generation i + 1/2 from generation
i. Each of these individuals was processed in turn and one of the two operators
was chosen (at random in the ratio crossover:mutation of 9: 1) and applied to
create an individual for generation i + 1. In the case of crossover, an individual in
generation i + 1/2 was crossed over with any of the individuals in that generation
(including himself, producing the identity transformation) with equal probability.

5.3.1.2      Finding     the     Initial      Tolerance
The appropriate initial tolerance value was determined by performing a series of
experiments. The tolerance schedule is shown in Figure 5.2. This tolerance
schedule was chosen by adapting a successful simulated annealing cooling
schedule to genetic algorithms. The tolerance is constant for the first ten
generations and then ramps down over the next thirty generations to a final value.
The final tolerance was set to be 0.5.



Experiments using the molecular biology problem with a four character pattern
were used to determine the initial tolerance. Ten initial tolerances were tested:
0.5, 1.25, 2, 3.5, 5, 6.5, 8, 9.5, 11, and 12. The number of generations required
for convergence (see Section 3.3.1) was recorded; the results are shown in Figure
5.3. Each experiment was repeated eight times; the numbers shown are averages.
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Figure 5.2: The tolerance schedule used in the Boltzman selection genetic
algorithm. The tolerance was set to Tinit for the first ten generations, ramped

down to Tfinal over thirty generations, and maintained at Tfinal until
completion. In all runs, Tfinal = 0.5 optimization units.

The U-shaped curve in Figure 5.3 is in accordance with our intuition about how
the initial tolerance should affect search behavior. If the initial tolerance is too
high, then the genetic algorithm spends too much time performing a random
search and requires a long time to focus on the few good solutions. If the initial
tolerance is too low, then the genetic algorithm performs a local search around
the individual with the highest fitness in the initial population and, therefore,
risks never finding the solution.
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Figure 5.3: The average number of generations to completion of the Boltzmann
scaling genetic algorithm for the problem of pattern length four. Experiments

that required more than fifty generations to complete were stopped at fifty
generations and combined to compute the average as if they had completed in fifty

generations.

On the basis of these results, an initial tolerance of 4 was chosen for the next
series of experiments. Unless otherwise noted, this tolerance schedule was used
for all of the problems discussed in this section. The observation that other
optimization surfaces were searched reasonably quickly with the same schedule
suggests that the method is robust with respect to small changes in the tolerance
schedule.

5.3.2 Comparison
This section compares Boltzmann scaling and proportional scaling on a small set
of molecular biology problems and Deb and Goldberg's F2 function [7] .

5.3.2.1       Molecular      Biology      Problem
The results of comparing the Boltzmann and proportional GAs are shown in
Table 5.2. The first and second columns give the number of characters in the
instances and in the patterns, the third shows the size of the population, the
fourth indicates how many times each experiment was performed and the fifth and
sixth give the average number of generations for the Boltzmann and proportional
GAs to converge. For this purpose convergence is defined as finding a pattern that
is a perfect match in each of the positive instances ("don't care" matches
everything) but in none of the negative instances. Note that the GA is not
required to find the optimal or characteristic pattern. The last column is the result

of applying a one-tailed statistical test: z = (µ1 − µ2 ) / σ1
2 / n1 + σ2

2 / n2 . If this

number is greater than 2.326 then the Boltzmann GA is better than the
proportional GA at the p < 0.01 level. If it is greater than 2.576 then it is
significant at the p < 0.005 level. A one-tailed (rather than two-tailed) test was
used to show that the performance of the Boltzmann GA was superior to (rather
than different from) the performance of the proportional GA.

Instance
Length

Pattern
Length

Population
Size

Runs Boltzmann Proportional Stat

25 4 100 49 12.0 16.3 2.4
35 6 100 44 12.0 25.8 6.5
50 8 100 36 16.9 34.2 6.7

Table 5.2: Results of comparison between Boltzmann GA and proportional GA.
The first two columns give the length of the instance and pattern. The third
column shows the size of the population of individuals. The Runs column

indicates how many times each experiment was repeated. The Boltzmann and
Proportional columns show the average number of generations needed for each

algorithm to converge. The final column gives the result of applying a
significance test to the results.



The results are clear. On all three versions of this problem, the Boltzmann GA is
far superior to the proportional GA.

Figure 5.4 shows the progress of the top individual in a Boltzmann scaling
experiment. At generation 0, the score is very low and the individual does not
match the target pattern, "RIEYGKSD", very well. But after a series of
mutations, crossovers, and shifts, the instance is perfectly aligned with the target
pattern at generation 19. After this point, the top individual is changed, one
position at a time, until it matches the target pattern perfectly. Note that in
collecting the data for Table 5.2 this run would have been considered to converge
at generation 34, when the pattern matches all of the positive instances and none
of the negative instances.

(.......%%%%%%%%..................................)
(rvftsdtRIEYGKSDawvqekhmkwiqfyprfateshkyiiitgvscvp)Gen     Score
(...........cvSwiwwk .............................)0        1.60
(.............Svswiwwk ...........................)1        1.60
(......swIwYGfg...................................)2-3      5.80
(.....gswIwYGf....................................)4        7.60
(.....gnwIwYGf....................................)5        8.80
(.........wYGKSswi................................)6       13.80
(........IwYGKSsw.................................)7-13    24.20
(........IwYGKSs*.................................)14      25.60
(......s*IwYGKS...................................)15-18   27.20
(.......*IwYGKS*..................................)19-22   30.00
(.......*IhYGKS*..................................)23-33   31.40
(.......*IEYGKS*..................................)34-42   43.60
(.......RIEYGKS*..................................)43      52.00
(......*RIEYGKS...................................)44-48   52.00
(.......RIEYGKS*..................................)49-53   52.00
(.......RIEYGKSD..................................)54      63.40

Figure 5.4: Simple Boltzmann scaling experiment. On each line the top
individual, the generation number, the number of perfect alignments with the
positive instances, and the score of the top individual is shown. The top line

shows a positive instance with the target region, "RIEYGKSD", in capitals and
the rest of the string in lower case. Each line shows the top individual and where

it matches the instance. When a letter matches with the target sequence it is
capitalized. "*" is the "don't care" character. The complete data base had five

positive and five negative instances, so the maximum number of perfect
alignments is five.

5.3.2.2      F2      Function
Two experiments were performed using the F2 function [7]  to explore the
properties of tolerance. The experiments differed only in the distribution of the
initial population. The first experiment, performed with a population randomly
distributed around the middle peak, demonstrates that the proportional GA does
not allow individuals to jump from the middle peak to the second highest peak
and then onto the highest peak, while the Boltzmann GA does. It also illustrates
how the Boltzmann GA searches the F2 space. The second experiment, performed
with a random initial population, shows how tolerance affects the search of the



Boltzmann GA and compares it to how the proportional GA searches the F2
space.

In the first experiment, the 100 individuals were randomly distributed between
0.400 and 0.600. The middle peak is at approximately 0.5. Figure 5.5 shows a
snapshot of the proportional GA and Boltzmann GA populations after 50
generations have passed.  Notice that the proportional GA was not able to move
any individuals from the middle peak, while the Boltzmann GA fully explored the
second highest peak and had an individual on the highest peak. Figure 5.6 shows
a time series of the progress of the Boltzmann GA. The population of individuals
began, at generation 0, with the 100 individuals on the middle peak. By
generation 23, some of the individuals began to explore the second highest peak.
At generation 60, there were few individuals left on the middle peak, many
individuals on the second highest peak, and a few individuals on the highest peak.
By generation 90, almost all of the individuals were on the highest peak.

(A)

(B)

Figure 5.5: The proportional and Boltzmann GA populations at generation 50.
(A) proportional GA population, (B) Boltzmann GA population.  The initial

population was randomly distributed between 0.400 and 0.600. The individuals
are represented by small circles and the F2 function is the dark, continuous line.
These graphs show the population immediately after the recombination operators

have been applied and before the scaling operation has been done. Notice that
none of the individuals in the proportional GA have been able to escape the local

optimum of the middle peak.



(A)

(B)

(C)

(D)



(E)

(F)

(G)

Figure 5.6: Boltzmann GA population time series. The initial population was
randomly distributed between 0.400 and 0.600. The individuals are represented by
small circles and the F2 function is the dark, continuous line. These graphs show
the population immediately after the recombination operators have been applied

and before the scaling operation has been done. Each graph shows the population
at a different generation: (A) generation 0, (B) generation 23, (C) generation 49,

(D) generation 60, (E) generation 70, (F) generation 80, (G) generation 90.

The second experiment, with a random initial population, demonstrates that the
behavior of the Boltzmann GA can be altered by changing tolerance.  The first
graph in Figure 5.7 shows the distribution of individuals in the Boltzmann GA
subject to a constant tolerance of 10. The second graph repeats the same
experiment but with a tolerance of 1. As expected, in the experiment with the
higher tolerance, the individuals were comparatively more distributed throughout
the space than in the experiment with the lower tolerance. The lower tolerance
caused more copies of the highest fitness individuals to be made and therefore



there was much more pressure to explore the highest peak than the other peaks.
For purposes of comparison, the same experiment done with the proportional GA
is also shown.

5.3.3 Tolerance in the Proportional GA
Given the formalism that has been presented to modify evolutionary tolerance, it
is possible to study how the proportional GA sets an effective tolerance value at a
given generation by choosing the tolerance that minimizes,

U j (X )

Ui (X )
i∑

− e
Uj (X)/T

eUi (X)/T
i∑













2

j
∑  

where Uj(X) is the score of individual j and T is the tolerance.

Minimizing this function gives the tolerance which best characterizes the
behavior of the proportional GA in the framework of the Boltzmann GA. For
runs of the molecular biology problem, the function was minimized using the
golden section search described by Press et al.[21].

The results are shown in Figure 5.8.  They indicate that in the proportional GA
the effective tolerance increases, rather than decreases, as a function of the number
of generations. This result, which runs contrary to both intuition and theory,
strongly suggests that the traditional proportional scaling technique may need
reconsideration.

(A)

(B)



(C)

Figure 5.7: Random initial population. The initial population was randomly
distributed between 0.000 and 0.999. The individuals are represented by small

circles and the F2 function is the dark, continuous line. These graphs show the
population immediately after the recombination operators have been applied and

before the scaling operation has been done. (A) Boltzmann GA population at
generation 20 with a tolerance of 10, (B) Boltzmann GA population at generation

20 with a tolerance of 1, (C) proportional GA population at generation 20. As
expected, the individuals in (A) are comparatively more distributed than the

individuals in (B).
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Figure 5.8: Effective tolerance in proportional GA. The dark line is for an
experiment in which the Boltzmann GA outperformed the proportional GA; the
light line is for an experiment with the opposite outcome. Both experiments are

for patterns of length eight.



5.4 Theoretical Analysis
5.4.1 Definitions of Scale and Translation Invariance
Section 5.2 gives empirical evidence showing that a genetic algorithm with
Boltzmann selection converges faster than an algorithm with proportional
selection. Moreover, the parameter T in the above transformation is a variable
parameter that can be used to control selective pressure during the course of a
genetic algorithm run. At the end of this theoretical analysis section, we will
give an analytical result that may account for this difference in convergence.

The primary properties of selection procedures that we will explore are scale and
translation invariance. As we discuss below, these invariances are important
properties not only because we feel intuitively that an optimal algorithm should
follow the same search path on a simple transformation of a problem as on the
original problem, but also because selective pressure should be carefully chosen
by the user and the algorithm and not imposed by the objective function.

Definition 3.1 A selection procedure is scale invariant exactly when:

P(F(U(X))) = P(F(kU(X)))

where k > 0 and X is an arbitrary population.

Intuitively, a selection procedure is scale invariant if multiplying the objective
function by a constant does not change the values produced by P.

Definition 3.2 A selection procedure is translation invariant exactly when:

P(F(U(X ))) = P(F(U(X ) ⊕ C
→

))

where C is a vector of identical constant elements Ci, ⊕  is vector addition, and X
is an arbitrary population.

Intuitively, a selection procedure is translation invariant if adding a constant to
the objective function does not change the values produced by P.

In the next section we show that the Boltzmann selection procedure is translation
invariant, but not scale invariant.

5.4.2 Scale and Translation Invariance of some Selection
Procedures
In this section we explore the scale and translation invariance of four selection
procedures. Because proportional selection is the best known and most widely
used selection procedure, we carefully examine its lack of translational invariance.

5.4.2.1           Proportional          Selection
Proportional selection is the most widely used selection procedure. We show that
the proportional selection function is scale invariant, but not translation
invariant, and we examine the nature of its lack of translational invariance.



Observation 3.3 The proportional selection procedure is scale invariant.

Proof:

Pi (F(kU(X ))) = Fi (kU(X ))

F(kU(X ))

= kUi (X )

kU(X )
= Ui (X )

U(X )

= Fi (U(X ))

F(U(X ))
= Pi (F(U(X )))

Observation 3 .4  The proportional selection procedure is not translation
invariant

Proof:

Pi (F(U(X ))) = Pi (F(U(X ) ⊕ C
→

)) ⇔

Fi (U(X ))

F(U(X ))
= Fi (U(X ) + C

→

F(U(X )) ⊕ C
→

⇔

U(X ) ⊕ C
→

U(X )
= Ui (X ) + C

→
i

Ui (X )
⇔

1+
C
→

U(X )
= 1+ C

→
i

Ui (X )
⇔

C
→

U(X )
= C

→
i

Ui (X )
⇔

U(X ) = Ui (X )

In general, the last equation is false.

The same result has been shown by Grefenstette and Baker [2] . In some sense,
the proportional selection function is trivially not translation invariant because a

negative constant Ui can be chosen such that (Ui(X) + C
→

i) < 0. But this proof

shows that proportional selection is not translation invariant even when C
→

i  > 0.

We can further investigate the role of this constant by asking how it affects
selective pressure.  We prove that as the constant increases, selective pressure
decreases. For this purpose we define selective pressure on an individual to be the
fitness of the individual divided by the average fitness of the population [24] .



Theorem 3.5 If F( R
→

) is bounded, then

lim
C→∞

Fi (R
→

) + c

F(R
→

) + c
= 1

Proof.

lim
C→∞

Fi (R
→

) + c

F(R)
→

+ c
= lim

C→∞

Fi (R
→

)

c
+1

F(R)
→

c
+1

= 1

Intuitively, the theorem says that as the constant c increases the differences
among individuals are blurred and therefore there is less and less selective
pressure. This result is of particular importance because adding a constant to an
objective function is recommended in the genetic algorithm literature as a way to
make negative fitness functions positive (see, e.g., [10,20]). This theorem says
that the choice of this constant can greatly affect the selective pressure, and
therefore the performance, of the genetic algorithm. Michalewicz makes a similar,
albeit more informal, argument [20]. Thus, this seemingly cosmetic change in
the fitness function, F, can have wide-ranging consequences.

Moreover, as a genetic algorithm progresses, individuals will become
increasingly fit. Intuitively, this might act like adding a constant to the fitness
function which decreases selective pressure [24] .

The following theorem makes the effect of the constant on selective pressure
more precise.

Theorem 3.6 If F is bounded and greater than zero and c > 0, then

Fmin + c

Fmax + c
> 1− Fmax

c

where Fmin is the fitness assigned to the least fit individual and Fmaxis the
fitness assigned to the most fit individual in a particular generation.

Proof.

Fmin + c

Fmax + c
> c − Fmax

c
⇔

cFmin + c2 > c2 − (Fmax )2 ⇔

cFmin > −(Fmax )2

This last equation is clearly true.



If Fmin and Fmax are interpreted to be the lower and upper bound on F, then the
theorem can be used to make general statements about an entire run. For
example, assume that the constant c is an order of magnitude greater than the
upper bound on F, then the least fit individual in the population will never be
less than 1 - 1/10 = 0.9 as fit as the most fit individual in the population.

We now consider Boltzmann selection [17] , power law selection [9] , and sigma
truncation selection [8].

5.4.2.2           Boltzmann      Selection
Observation 3.7 The Boltzmann selection procedure is not scale invariant.

Proof:
P(F(U(X ))) = P(F(kU(X ))) ⇔

ekUi (X)/T

ekU(X)/T
= eUi (X)/T

eU(X)/T
⇔

e(k−1)Ui (X)/T =
ekU(X)/T

eU(X)/T

This last equation is clearly false.

Although Boltzmann selection is not scale invariant, any changes in scale can be
offset by multiplying the temperature parameter by the scaling constant, k.

Observation 3.8 The Boltzmann selection procedure is translation invariant.

Proof.

Pi (F(U(X ) ⊕ C
→

)) = e(Ui (X)+C
→

i )/T

e(U(X)⊕C
→

)/T

= e C
→

i /T eUi (X)/T

e C
→

/T eU(X)/T

= eUi (X)/T

eU(X)/T

= Pi (F(U(X )))

Thus, the Boltzmann selection procedure is translation invariant but not scale
invariant.

5.4.2.3           Power          Law      Selection
Definition 3.9 The power law selection procedure is

Fi (U(X )) = Ui (X )b

where b is a constant and U, P, and W are defined as in proportional selection.



Observation 3.10 The power law selection procedure is scale invariant.

Proof:

Pi (F(kU(X ))) = Fi (kU(X ))

F(kU(X ))

= (kUi (X ))b

(kU(X ))b
= k b (Ui (X ))b

k b (U(X ))b

= Fi (U(X ))

F(U(X ))
= Pi (F(U(X )))

Observation 3 .11  The power law selection procedure is not translation
invariant.

Proof:

Pi (F(kU(X ))) = Pi (F(U(X ) ⊕ C
→

)) ⇔

Fi (U(X ) ⊕ C
→

)

F(U(X ) ⊕ C
→

= Fi (U(X ))

F(U(X ))
⇔

(Ui (X ) + C
→

i )b

(U(X ) ⊕ C
→

)b
= (Ui (X ))b

(U(X ))b
⇔

(U(X ))b

(U(X ) ⊕ C
→

)b
= (Ui (X ))b

(Ui (X ) + C
→

)b

The last equation is false.

5.4.2.4           Sigma          Truncation      Selection
Definition 3.12 The sigma truncation selection procedure is:

Fi (X ) = g(Ui (X ) − (< U(X ) > −cσ ))

where

g(x) =
x if x > 0

0 otherwise




σ  is the standard deviation of U(X) in a particular generation, c is a small
constant, and U, P, and W are defined as in proportional selection.

Observation 3 .13  The sigma truncation selection procedure is translation
invariant.



Proof: Note that the standard deviation of U(X) is equal to that of (U(X) ⊕C
→

).

Pi (F(U(X ) ⊕ C
→

))

= g((Ui (X ) + C
→

i ) − (< U(X ) ⊕ C
→

> −cσ ))

g((U(X ) + C
→

) − (< U(X ) ⊕ C
→

> −cσ ))

= g(Ui (X ) − (< U(X ) > −cσ ))

g(U(X ) − (< U(X ) > −cσ ))

= Pi (F(U(X )))

The proof of the translation invariance of sigma truncation is very different from
the proof of the translation invariance of the Boltzmann fitness function. In the
Boltzmann proof, the structure of P is exploited to cancel the constant. In the
sigma truncation proof, the structure of P is irrelevant because

Fi (U(X )) = Fi (U(X ) ⊕ C
→

) . We formalize this notion in the following definition.

Definition 3.14 A selection procedure is strongly translation invariant exactly
when:

Fi (U(X )) = Fi (U(X ) ⊕ C
→

)

Intuitively, a selection procedure is strongly translation invariant when the
invariance is independent of the particular choice of P. It is easy to show that
strong translation invariance implies translation invariance with respect to P.
Strong scale invariance can be analogously defined.

5.4.3 Rank Selection and Tournament Selection
Rank selection [3]  is both scale and translation invariant because the relative
position of an individual in a sorted list of raw fitness is not affected by a
translation in the raw fitness or a scaling change in the raw fitness. Similarly, the
outcome of a head to head competition between the raw fitnesses of two
individuals is not changed by a scaling change or a translational change, so
tournament selection [4]  is both scale and translation invariant.

Since tournament selection and rank selection are interested only in qualitative
comparisons of fitness, rather than quantitative numerical values, they are
insensitive to many other transformations in the fitness function. For example,
cubing the objective function will not change tournament and rank selection.

5.4.4 Understanding the Relationship between Proportional and
Boltzmann Selection
The relationships among selection procedures have been studied empirically by
many researchers (e.g., [13,1,17] and others).  Typically, two identical genetic
algorithms, differing only in the type of selection procedure they employ, are



tested on a variety of test functions. Here, we are interested in analytically
exploring the relationship between proportional and Boltzmann selection.

We propose a general technique for analytically comparing two selection
procedures. All of the selection procedures that we have studied, with the
exception of proportional fitness, have problem dependent parameters. The
relationship between two selection procedures can be studied by explaining how
to set these parameters so that one selection procedure acts like the other. In this
particular case, the Boltzmann selection procedure has an extra parameter, T. We
are interested in understanding how to set the parameter T so that Boltzmann
selection is most like proportional selection. By "most like" we mean the setting
of T such that the difference between W(P(F(U(X)))) and W'(P'(F'(U'(X)))) is

minimized, where (W, P, F, U) and (W', P', F', U') define the two selection
procedures. The following theorem explains how to set the parameter T in order
to achieve this goal:

Theorem 3.15 If U(X) has a normal distribution at a particular generation, then
Boltzmann selection is most like proportional selection when

βeσ2β 2
= 1

µ

where  β = 1/T, p is < U(X) >, and σ 2 is the variance of U(X).

The proof of this theorem can be obtained from the author whose address is
supplied at the beginning of this chapter. Notice that since βeσ2β 2  is a strictly
increasing function of β , the exact value of β  can be found by using a simple
binary search strategy (Cormen, Leiserson et al. 1990) . If µ  increases as a
function of time (there is considerable empirical evidence that it does; see, e.g.,
(Goldberg 1989) ) and σ 2  does not decrease rapidly as a function of time, then β
will decrease as a function of time. This corresponds to an increase in the
temperature parameter, T. If T is interpreted as controlling selective pressure
(when T is high, selective pressure is low and vice versa), then the proportional
selection procedure decreases selective pressure with time.  In the field of
simulated annealing, T decreases with time and therefore selective pressure
increases with time. This may partially explain why Boltzmann selection out
performs proportional selection on some problems (de la Maza and Tidor 1992).

5.5 Discussion and Related Work
We have implemented Boltzmann scaling on the optimization function to select
the number of offspring each individual in the current population contributes to
the next generation; the procedure outperforms a standard proportional scaling
method on the small set of problems we have investigated. A broader range of
problems should be used to test the generality of this result. The tolerance
schedule is robust enough that the same schedule was used successfully for
problems of different sizes and correspondingly different scales in optimization
space. These results show that, for the molecular biology problem, many
Boltzmann experiments completed with a correct solution before the decrease in



tolerance that occurred after generation ten and nearly all completed before the
schedule leveled off again after generation forty.

One possibility that we have not investigated, but which is used in biological
systems, is to vary population size.  In high tolerance periods the size of the
population could be allowed to increase, and in low tolerance periods it could be
forced to decrease. The advantage of such an approach is that more low fitness
individuals could be retained for use in crossover during critical stages of the
optimization, though it is not clear whether the benefits of this outweigh the
computational overhead.

A refinement of our method that we have considered is to eliminate all duplicates
in the population before applying Boltzmann selection and adjusting the selection
to restore the fixed population size, as would be required by a strict interpretation
of the Boltzmann equation. The current distribution of fitness after selection is
biased somewhat more toward fit individuals than the refined method would be,
but we expect that any benefit would be small relative to the cost of finding and
eliminating duplicates. Moreover, biological systems, particularly those with
larger genomes, have no such mechanism. Rather, they use a suite of genetic
operators that tend to keep exact duplicates as a low probability event.

Whitley [23] reports using an exponential selection protocol for a genetic
algorithm and found that this increased problems of premature convergence. This
contradicts our results and suggests that the use of a reasonable evolutionary
tolerance schedule is important. It should be noted that the evolutionary tolerance
corresponds roughly to the acceptable range of scores, in optimization units,
between the best and worst individuals kept after selection; thus, it is expected to
vary with the scale of optimization space and the use of trial runs to choose
useful parameters is valuable.

Goldberg [11] describes a Boltzmann tournament scheme in which the population
of individuals converges to a Boltzmann distribution. The method was developed
so that genetic algorithms could benefit from the asymptotic convergence
properties enjoyed by simulated annealing and so that simulated annealing
procedures might be efficiently implemented on parallel machine architectures.
The algorithm includes a non-genetic "anti-acceptance" step that effectively
converts between Boltzmann and uniform distributions. Our goal here is to
achieve faster convergence to the global optimum rather than to a specific
distribution. We use Boltzmann scaling to control the approach to this optimum
by varying selective pressure through the tolerance (or its physical analogue,
temperature). Indeed, this is found to improve convergence over proportional
scaling on at least this set of problems. Moreover, proportional scaling appears
to increase, rather than decrease, effective tolerance during the course of an
optimization.

Back and Hoffmeister [1] study the performance of a genetic algorithm as a
function of selective pressure on the less fit individuals in the population (referred
to as "extinctiveness"). For a unimodal objective function, they find optimum
performance with strong selective pressure, which produces relatively little
genetic diversity and a gradient-directed search. In contrast, for a multimodal



objective function, they find optimum performance with weaker selective
pressure, which produces more genetic diversity and exploration of the search
space.

The parameters of their genetic algorithm were not modified during the course of
a run and they comment that, without knowing the character of the objective
function, it is difficult to choose the proper search strategy.  One approach to
solving this problem is to use a hybrid strategy that is initially more explorative
and then becomes more directed as the run proceeds, as is generally done in
simulated annealing [17].

Whitley [24] gives an informal argument that explains why proportional
selection decreases selective pressure with time and proposes the use of rank-based
selection, because it does not rely on the relative arbitrariness of the objective
function to define the selective pressure. We have illustrated the use of a
transformation from objective function to fitness and identified invariance
properties of this key transformation for a number of selection procedures. We
have pointed out that Boltzmann selection is invariant to translations and that a
simple parameter, T, can be used to control scaling. Moreover, this parameter can
be used to vary selective pressure during a run to switch from a more explorative
to a more directed search strategy. Theorem 3.15 proves that proportional
selection decreases selective pressure with time. In simulated annealing and in
Boltzmann selection, selective pressure increases with time.

Baker [2] studies selection algorithms with the goal of overcoming the premature
convergence problem. Grefenstette and Baker [14] examine how selection
procedures interact with implicit parallelism and argue that the usual application
of the k-armed bandit problem to genetic algorithms may be flawed, a view which
is disputed by Goldberg and Deb [12]. Grefenstette [13] extends the results of
Baker and Grefenstette and strongly argues that because the genetic algorithm has
access to a biased sample, instead of an unbiased sample, of points, the standard
understanding of implicit parallelism needs to be reexamined. Goldberg and Deb
[12] hint that proportional selection may not maintain selective pressure as the
point of convergence nears, a suggestion that is supported by Theorem 3.15.

5.6 Conclusion
This chapter has illustrated the implementation of a procedure for genetic
selection based on Boltzmann scaling of the optimization function and
empirically demonstrated that it leads to convergence to the correct solution in
fewer generations than traditional proportional scaling on a small set of
problems. Furthermore, it was proved that proportional scaling, contrary to
intuition and annealing methods, actually increases evolutionary tolerance during
the experiment.

Translation and scale invariance are powerful properties to examine for selection
procedures. Intuitively, it may be desirable for an optimization procedure to solve
a problem equally well whether it is expressed in feet or meters and in the
Gregorian or the Chinese calendar. If the procedure itself is not translation and
scale invariant, parameters could be available that can be adjusted for each



problem. Presumably, setting these parameters properly will result in similar
solutions in similar times for different translations and scalings of the same
problem.
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