
1

Chapter 6

Shumeet Baluja
School of Computer Science
Carnegie Mellon University
Pittsburgh
Pennsylvania 15213-3890

baluja@cs.cmu.edu

Structure and Performance of Fine-Grain Parallelism in Genetic
Search

6.1 Introduction
6.1.1 The Motivation Behind Parallelism
6.1.2 Massive Parallelism

6.2 Three Fine-Grain Parallel GA Topologies
6.3 Performance of fgpGAs and cgpGAs

6.3.1 Description of Algorithms Compared
6.3.2 The Problems Attempted
6.3.3 Results and Discussion

6.4 Future Directions
6.4.1 Test Problems
6.4.2 Subpopulation Interaction

Abstract
Within the parallel genetic algorithm framework, there currently exists a growing
dichotomy between coarse-grain and fine-grain parallel architectures. This chapter
attempts to characterize the need for fine-grain parallelism, and to introduce and
compare three models of fine-grain parallel genetic algorithms (GAs). The
performance of the three models is examined on seventeen test problems and is
compared to the performance of a coarse-grain parallel GA. Preliminary results
indicate that the massive distribution of the fine-grain parallel GA and the
modified population topology yield improvements in speed and in the number
of evaluations required to find global optima.

2

6.1 Introduction
Since Holland's pioneering work [Holland, 1975], there have been many
variations of the simple genetic algorithm. The development of genetic
algorithms has been driven by the goal of maintaining the balance of diverse
sampling and efficient focusing. With regards to parallelism, there have been two
stages of development beyond the genetic algorithms (GAs) proposed by Holland.
The first is the coarse-grain parallel genetic algorithm, in which several large
populations are evolved in parallel with very little interaction. The second stage
is the fine-grain parallel genetic algorithm, in which numerous small, constantly
interacting populations are evolved in parallel.

6.1.1 The Motivation Behind Parallelism
Explained simply, a parallel genetic algorithm (pGA) divides a single large
population into smaller subpopulations. Each of the subpopulations runs a
separate genetic algorithm either independently or with limited interactions with
other subpopulations. One motivation for this division is the potential increase
in speed through the assignment of each processor, of a multi-processor system,
to evolve a single population. However, a more interesting motivation stems
from the observation that, after some period of evolution, the majority of the
chromosomes in a single population will become very similar. Genetic diversity
will be lost, and recombination thereafter may not be productive. One method of
addressing this problem is to evolve subpopulations independently. As GAs are
randomized algorithms, independent evolutions are likely to explore different
portions of the search space. If the functions to be optimized for each
subpopulation are the same, each subpopulation should reveal closely
competitive, yet unique results.

The amount of interaction between subpopulations can be a critical factor in
determining a pGA's effectiveness. Eliminating interaction between
subpopulations effectively makes dividing a larger population similar to
performing several GA runs with smaller populations. With too much
interaction, the benefits of subpopulations are lost. Good chromosomes from one
subpopulation quickly spread to other subpopulations, and the evolutions no
longer remain independent. Cohoon et al. suggest that members of
subpopulations be swapped after the subpopulations begin to reach equilibrium
[Cohoon, 1988]. The results of Whitley and Starkweather, Tanese, and Grosso,
also support limited interactions [Whitley and Starkweather, 1990] [Tanese,
1989] [Grosso, 1985].

Although some of the pGAs differ in many parameter settings, [Whitley and
Starkweather, 1990] [Pettey, 1989] [Cohoon, 1988], several important factors
remain consistent in the majority of them: they evolve a relatively small
number of subpopulations, and each subpopulation contains a large number of
chromosomes. The pGAs described to this point are referred to as coarse-grain
parallel genetic algorithms (cgpGAs). One of the drawbacks of cgpGAs is that
after a subpopulation converges to an equilibrium state, the introduction of new
material may not be effective. The new material may not be incorporated
because of its incompatibility with the existing information. A reason for
incompatibility may be as simple as two subpopulations may evolve answers to
opposite sides of a large hamming cliff, or in more general terms, that two

3

subpopulations may find good solutions which, when combined, reveal a worse
solution.

6.1.2 Massive Parallelism
Massive Parallelism in genetic algorithms has been used in at least two different
contexts. In the first context, parallelism refers to the machine architecture on
which the GA is run. Parallelism is employed to achieve a gain in speed, and to
allow much larger population sizes to be evolved in reasonable amounts of time
[Forrest and Perelson, 1990]. The second context, and the one explored
throughout the remainder of this paper, is one in which numerous small,
constantly interacting subpopulations are evolved in parallel, with localized
mating rules. Another related application of massive parallelism can be found in
[Hillis, 1990]. Hillis used a massively parallel architecture to co-evolve parasites
with chromosomes.

Fine-grain parallel genetic algorithms (fgpGAs) addressed some of the problems
found in cgpGAs. One way to conceptualize the modified form of parallelism is
to view the populations as overlapping, with a portion of the constituents of one
population also being constituents of one or more other subpopulations. In an
analogous manner to biological natural selection, in which a population is
typically composed of relatively independent subpopulations which interact,
recombination occurs between two chromosomes from within localized
neighborhoods [Davidor, 1991] [Spiessens and Manderick, 1991] [Muhlenbein,
1989] [Schleuter, 1990]. The constant interaction between subpopulations helps
to alleviate the problems of recombining incompatible solutions. It is difficult
for a subpopulation to exist in a state of equilibrium until all of its neighboring
subpopulations reach equilibrium.

A potential drawback of the fgpGA architecture is that local optima can quickly
spread through the entire population. Since there is constant swapping between
subpopulations, the possibility of independent evolutions may be hindered.
Further, because the size of subpopulations is small, the schemata represented in
strong local optima can quickly dominate all of the genetic information in
individual subpopulations. In practice, this problem is partially overcome by
limiting the amount of swapping between subpopulations. Another factor which
can reduce the detrimental effects of constant swapping is the large number of
subpopulations. Subpopulations which are a large distance apart may evolve
unique chromosomes in a manner similar to cgpGAs. This has been termed
isolation by distance [Collins and Jefferson, 1991]. In the next section, three
fgpGA structures are examined which vary with respect to how swapping between
subpopulations is implemented. The effects of the speed of information flow,
which is dependent upon the amount of interaction between subpopulations, will
be discussed throughout the remainder of this paper.

6.2 Three Fine-Grain Parallel GA Topologies
Using the fine-grain parallel subpopulation structure, three topologies were
examined. The first implementation uses a circularly linked linear ordering of
subpopulations. Each subpopulation evolves only 2 chromosomes per
generation. These 2 chromosomes are chosen from a group of 10 chromosomes.
The group of 10 is comprised of 1 chromosome from each of the four immediate

4

left and 1 chromosome from each of the four immediate right subpopulations, and
the 2 chromosomes which were evolved in the subpopulation during the previous
generation. See Figure 6.1. Each chromosome selected from the neighbors is
chosen randomly from the two evolved at each neighbor. The fitness of every
chromosome is calculated relative to the other chromosomes in the group of 10.
Two chromosomes from the set of 10 are probabilistically chosen for
recombination, based upon their relative fitness. The other 8 chromosomes are
discarded. In the subsequent generation, the two "children" chromosomes produced
(through crossover and mutation of the selected parents) are available for
recombination, either by the subpopulation on which they are located, or by its
neighbors.

Subpopulations

chrom.subpop. (x+1) chrom.subpop. (x-2)
chrom.subpop. (x+2) chrom.subpop. (x-3)
chrom.subpop. (x+3) chrom.subpop. (x-4)
chrom.subpop. (x+4) chrom.subpop. (x)
chrom.subpop. (x-1) chrom.subpop. (x)

x

Figure 6.1: The architecture of subpopulations, arrangement #1. Subpopulation x
shown enlarged. The subpopulations form a circular list.

The second implementation uses a two dimensional toroidal array of
subpopulations. As in the previous implementation, each of the subpopulations
evolve 2 chromosomes which are chosen from a group of 10. The 8 immediate
neighboring subpopulations donate to the group of 10. See Figure 6.2. The
remainder of the procedure is completed in the same manner as described above.

In the third implementation, a linear ordering of subpopulations is used once
again. One chromosome from each of the 3 immediate left and one chromosome
from the 4, 5, 6 subpopulations from the right contribute to the group of 10
chromosomes. See Figures 6.3 and 6.4. Figure 6.4 gives a pictorial example of
how the genetic information flows through the series of GAs. Unlike the first
implementation, the immediate right subpopulations are not used. Since there are
4 remaining positions in the group of 10, they are filled with 2 copies of each of
the chromosomes evolved in the previous generation. This structure includes only
6 neighbours to examine the effects of reducing the spread rate of chromosomes
and introducing a bias to the chromosomes evolved within each subpopulation.
After the selection of 10 chromosomes, the fgpGA proceeds in the same manner
as described earlier. This model was chosen because it allows a faster spread of
chromosomes than the first implementation, and a slower rate than the second
implementation.

5

SUBPOPULATION (X,Y)

chrom.subpop. (x+1,y) chrom.subpop. (x,y+1)
chrom.subpop. (x+1,y-1) chrom.subpop. (x+1,y+1)
chrom.subpop. (x-1,y-1) chrom.subpop. (x,y-1)
chrom.subpop. (x-1,y) chrom.subpop. (x,y)
chrom.subpop. (x-1,y+1) chrom.subpop. (x,y)

(0,yMax)

(xMax,yMax)

.

.

. . .

. . .

. . .

. . .

. . .

. . .

Figure 6.2: Each subpopulation contributes one of its two chromosomes to each
of its 8 nearest neighbors. The composition of subpopulation(x,y) is shown.

Both of the chromosomes evolved at subpopulation(x,y) are included. The
subpopulations form a toroid.

chrom.subpop. (x+4) chrom.subpop. (x-3)
chrom.subpop. (x+5) chrom.subpop. (x)
chrom.subpop. (x+6) chrom.subpop. (x)
chrom.subpop. (x-1) chrom.subpop. (x)
chrom.subpop. (x-2) chrom.subpop. (x)

Subpopulations x

Figure 6.3: The architecture of subpopulations arrangement #3, subpopulation x
shown enlarged. The subpopulations form a circular list.

Making the large assumption that the best chromosomes are not lost during
crossover or mutation, the maximum spread rate of a good chromosome varies
per implementation. In arrangement #1, the linear ordering, assuming 4096
subpopulations, the lower bound on the number of generations for all of the
subpopulations to see the best chromosome is 512-1, or 511 generations. In
arrangement #2, the toroid, the minimum number of generations to get from any
subpopulation to the furthest away, is half the diagonal of the square. Assuming
a 64 * 64 toroid, within approximately 31 (32-1) generations, the chromosome

6

could be in all of the subpopulations. Using arrangement #3, a compromise
between the first two with regard to speed, the number of generations is
approximately 455. All of the -1 factors arise since in the first generation a good
chromosome is found, it can be included in its neighbor’s selection of 10
chromosomes. These estimates are only the lower bound of the spread of the best
chromosome. The chromosomes will not generally spread this fast. For these
speeds to be achieved, the chromosome must be reselected for recombination at
each generation, and none of the valuable schemata can be destroyed by crossover
and mutation. Further, this also assumes that no better chromosomes are found
before full spreading. In the experiments performed, the chromosome in the
neighboring subpopulations was selected randomly from the two which were
evolved in the neighbor. However, always selecting the best, or using a
probabilistic scheme of selection may also work well. Another topology, termed
the "ladder" population structure, has been explored by Muhlenbein and Schleuter
[Muhlenbein, l989] [Schleuter, 1990].

Figure 6.4: Making the large assumption that the best chromosome is not lost
during crossover or mutation, the above diagram depicts how the best

chromosome could spread through the populations, using fgpGA configuration
#3. In generation a+5, a new best chromosome is found. The connections shown
are the subpopulations from which a chromosome is included. These connections

do not change through the run of the GA. Each subpopulation has similar
connections to those shown.

6.3 Performance of fgpGAs and cgpGAs

6.3.1 Description of Algorithms Compared
Four algorithms were tested, the three implementations of fgpGAs described in
the previous section, each with 4096 subpopulations, and a 40 subpopulation
cgpGA described in this section [Baluja, 1993]. All used a constant 1% mutation

Generation Subpopulations

Best Chromosome not
in Population

Best Chromosome just
found in Population

Best Chromosome already
in Population

a

a+1

a+2

a+3

a+4

a+5

a+6

7

rate and two point crossover. The evolution was generational, and crossover took
place with each set of parents. An alternative to the generational model, the
steady state model, is explored in [Whitley and Starkweather, 1990]. All
algorithms also used a modest form of elitist selection, in which the single best
chromosome in generation a replaced the worst chromosome in generation a+1.
Elitist selection was performed within each subpopulation. In the fgpGAs, the
best chromosome was selected from each group of 10 chromosomes, and replaced
the worst chromosome from the group of 10 in the next generation. Elitist
selection does not ensure that a particular chromosome will be selected for
recombination, only that it will be a candidate for selection.

The cgpGA was very loosely based upon the cgpGA described in [Whitley and
Starkweather, 1990]. Forty subpopulations were evolved. Each subpopulation
contained 100 chromosomes, for a total of 4000 chromosomes evaluated
simultaneously. Assuming a circular ordering of subpopulations, after every 100
generations, the best chromosome from each subpopulation migrated to a
subpopulation e subpopulations away, where e is defined to be the number of
generations divided by 100 that have passed. Because the population was a set
size, the migrating chromosome replaced the worst chromosome in the target
subpopulation.

In an attempt to efficiently map these algorithms onto the hardware architecture
on which these tests were attempted, the MasPar MP-I, the fgpGA evaluated
8192 chromosomes per generation, while the cgpGA evaluated only 4000.

6.3.2 The Problems Attempted
DeJong's Test Suite: This test suite is comprised of five minimization problems
commonly used to test the effectiveness of GAs [DeJong, 1975]. The functions
were encoded using standard binary code.

Subset Sum: The problem can be stated as follows: given S elements, each of a
possibly unique weight, is there a subset of S that adds up exactly to an arbitrary
number, T? This problem was implemented as a 120-bit chromosome. Each bit
represented a unique object, assigned a random integer weight between 1 and 200.
The weight T was selected to be either 1/4, 1/20, or 1/40 of the sum of the
weights of the objects. The object was to find the group of sets whose weights
add exactly to T. The sum was guaranteed to be divisible by 4, 20 and 40,
respectively; note that this does not guarantee a set of weight T.

All Ones: Three versions of the all-ones problem were attempted [Syswerda,
1989]. The first was the straight all-ones problem. The objective is to find the
chromosome which contains a 1 in each bit position. The second version
contains bits which are meaningless. This problem was encoded as a 180 bit
problem, but only the first 120 bits were counted toward the evaluation. The
optimal solution to this problem is 120. The third is the contiguous bits
problem. Points are only given for 1's which have at least one other neighbor
which also has a value of 1.

9

Fully and Partially Deceptive Order 4: The fully deceptive problem is a 40 bit
maximization problem. The problem was defined in Whitley and Starkweather's
paper GENITOR II [Whitley and Starkweather, 1990]. The problem is comprised
of 10 subproblems, each 4 bits long. The subproblems use the lookup table
shown in Table 6.1. The partially deceptive problem uses the same evaluations,
with the exceptions of the reversed evaluations for 1111 and 0101.

Chrom Evl Chrom Eval
1 1 1 1 30 0 1 1 0 14
0 0 0 0 28 1 0 0 1 12
0 0 0 1 26 1 0 1 0 10
0 0 1 0 24 1 1 0 0 08
0 1 0 0 22 1 1 1 0 06
1 0 0 0 20 1 1 0 1 04
0 0 1 1 18 1 0 1 1 02
0 1 0 1 16 0 1 1 1 00

Table 6.1: Order 4 fully deceptive problem.

E
v

al
u

at
io

n

o(x): The Number of Ones in Chromosome
Figure 6.5: The gap problem. o(x) is the number of ones per chromosome.

The gap size is Y. The starting point of the gap is P.

Both the fully deceptive and partially deceptive problems were attempted using
two orderings of bits. The first encoding is block encoding: the placement of the
4 bits which comprise a subproblem are located next to each other. For example,
the first subproblem has bits in position 1,2,3,4. The second encoding is
interleaved: the bits in each subproblem are uniformly spread throughout the
chromosome. For example, the first subproblem has bits in positions 1, 11, 21,
31. Using two point crossover, the first encoding is easier for the GA to solve
than the second

The Gap Problem: This is a maximization problem [Liepins and Baluja, 1991]
shown in Figure 6.5. The gap function f(x), with gap of size Y, starting at point
P, with o(x) being the number of ones in the bit string, is defined by:

10

f (x) =
2P + Y − o(x) −1,if (P ≤ o(x) ≤ P + Y −1)

o(x),if ((o(x) < P) ∨ (o(x) > P + Y −1))

This problem was tested on a 120 bit chromosome string. Gap sizes of 20 and 25
were tried with the starting gap point, P=60.

6.3.3 Results and Discussion
Table 6.2 shows the results of the 17 test problems; they are the average of 10
runs per problem for each algorithm. One of the difficulties inherent in
comparing parallel genetic algorithms with each other, and with traditional GAs,
is choosing the best criteria [Baluja, 1993]. Criteria which measure performance
of the GA by the fitness of the best individual through the run of the algorithm
are biased in favor of larger parallel GAs. If the number of evaluations performed
is chosen as the criterion, parallel GAs often do not perform well, as parallel GAs
may perform a lot of repetitive search. However, the quality of solutions evolved
by pGAs have been shown empirically to be better than single population GAs
in a variety of problems [Petty, 1989] [Tanese, 1989]. The measure used in this
study is the number of generations to find the optimal solution and the number of
evaluations per generation. However, using the optimal solution as a stopping
criterion raises another issue: GAs find regions of good performance very quickly;
the majority of the time is spent locating relatively small improvements in
search of the optimal solution. For example, when the evaluation curves of
DeJong f4 are examined, it is clear that the vast majority of the time between
generations 200-700 is spent making very small improvements, see Figure 6.6.
As stated by Forrest and Mitchell "it could be argued that the GA is more suited
to finding good solutions quickly rather than finding the absolute best" [Forrest
and Mitchell, 1993]. The results in this study certainly agree with this.

The ability of good chromosomes to spread rapidly through the population
contributed to the success of the fgpGAs. A sample run, shown in Figure 6.7,
displays the number of subpopulations that contain chromosomes which have
evaluations equal to the best chromosome in the entire population. These
chromosomes are candidates for selection in their respective groups of 10. This
does not imply that all the chromosomes are exactly the same, nor does it imply
that they will be chosen for recombination. The sudden drops of the number of
populations, in Figure 6.7, represent generations in which a better chromosome
was found. The actual spread rate does not match the fastest possible spread rates
mentioned in Section 6.2. Although a good chromosome can be immediately
accessed by its neighbors as soon as it is found, for more than the immediate
neighbors to incorporate the chromosome, it must again be selected for
recombination. Further, if it is selected, valuable schemata must not be destroyed
by crossover or mutation operators. Although the populations which surround
the immediate neighbors will incorporate the children chromosomes into their
population, for them to spread the chromosome further, they must also select the
children chromosomes for recombination. However, the evaluation of the children
chromosomes may not be as good as the original chromosome. Further, if the
crossover and mutation operations have destroyed valuable schemata, the children
produced may not be preserved by elitist selection.

11

Test Function fgpGA
Linear Order

fgpGA
64*64 Array

fgpGA
Linear Skip

cgpGA
40 sb pop.

DeJong Function #1 32.0 29.8 30.6 79.0
DeJong Function #2 40.0 38.6 43.9 111.8
DeJong Function #3* 22.0 19.5 20.4 64.5
DeJong Function #4 See Figure 6.6
DeJong Function #5** 17.9 18.0 17.8 18.0
Subset Sum (1/4) 21.0 14.0 12.0 35.6
Subset Sum (1/20) 68.0 55.0 65.0 344.5
Subset Sum (1/40) 95.4 76.8 87.8 629.0
All-Ones 114.0 90.5 107.7 648.2
Sparse All-Ones*** 134.0 94.8 113.3 342.0
Contiguous All-Ones 131.0 90.8 111.0 609.1
Fully Deceptive (A) 90.0 57.5 78.4 305.9
Fully Deceptive (B) 1220 (4) 742.5 942.2 (5) 1634.7
Partially Deceptive (A) 39.0 32.0 38.0 95.1
Partially Deceptive (B) 70.0 53.0 75.0 252.5
Gap Problem (Size 20) 161.2 126.3 164.3 675.9
Gap Problem (Size 25) 816.4 (5) 441.2 699.1 (9) 776.0

Table 6.2: Results for the 17 test problems. Each entry represents the average
number of generations to find the optimal solution. The fgpGA evaluated 8192
chromosomes per generation, while the cgpGA evaluated 4000. A number in
parentheses indicates that the optimal solution was only found the specified
number of times, out of 10. The fgpGA was allowed 1400 generations, the

cgpGA was allowed 3000.

* The stopping criterion for DeJong's F3 was an evaluation of -30.
** The stopping criterion for DeJong's F5 was an evaluation of 0.998004.
*** Due to memory restrictions, this problem was attempted with 90 significant
bits, and 30 extra bits (cgpGA only). The fgpGA runs were full size (120
significant bits, 60 extra bits).
Portions of this table appear in [Baluja, 1993].

12

Figure 6.6: Average evaluations for 10 runs of the cgpGA and the fgpGAs on
DeJong's F4, including the random Gaussian factor. The cgpGA was run with 50

chromosomes per subpopulation and 80 subpopulations. In the last 500
generations, very little improvement was made. [Baluja, 1993].

The different success rates of the fgpGAs on the Deceptive - Order 4 problem and
the Gap(25) problem for the three fgpGAs illustrate the significant role
subpopulation interaction has in performing successful search. It is interesting to
note that in both of these problems, the cgpGA and the fgpGA (implementation
2) did the best; the other two implementations of the fgpGA did poorly. A
possible explanation is that the structure of these problems benefits from larger
population sizes. Since the fgpGA-2 has the fastest spread rate, it simulates a
larger population more closely than the other implementations. One of the
immediate plans for future research is to examine the performance on these two
problems in greater detail.

13

Figure 6.7: The number of populations which contain the best chromosome
using the fgpGAs to optimize the order 4 fully deceptive problem, interleaved.

The sudden drops in the number of subpopulations represent a new best solution
found in one of the subpopulations. There are a total of 4096 subpopulations.

The 2D array architecture found the optimal at approximately generation 600. The
others did not find the optimal in 1400 generations.

The parameters in the cgpGA and fgpGA were not tuned per problem. It is
suspected that with a little tuning, both types of GAs could significantly improve
performance. However, to measure the ability of the algorithms to perform on a
variety of problems without parameter tuning, the parameters were held constant
throughout all of the test runs.

6.4 Future Directions
To evaluate fine-grain parallelism in more detail, both harder problems and
different population topologies should be explored.

6.4.1 Test Problems
The test problems attempted in this study comprise a fairly standard test suite of
problems which aid in quantifying the effectiveness of GA models. However,
many of these problems were designed to test the abilities of single population
GAs, and do not reveal the potential of parallel GAs. For future testing of the
fgpGA topologies, both harder problems ahd multi-objective problems should be
attempted.

One of the harder problems tested should be the Traveling Salesperson Problem.
This would help quantify the differences in performance of this system and the
systems developed by Muhlenbein and Schleuter [Muhlenbein, 1989] [Schleuter,
1990]. They have extensively explored the TSP problem with parallel GA

14

systems and have achieved very promising results. The functions termed Tanese
Functions by S. Forrest and M. Mitchell [Tanese, 1989][Forrest and Mitchell,
1993] should also be attempted. These functions have proven to be very hard to
optimize genetically, but are susceptible to hill climbing techniques.

Parallel GAs lend themselves to multi-objective optimization problems. The
evaluation criterion of each population can reflect different objectives. When
members of separate subpopulations are mixed, the children produced may be
strong with respect to more than a single objective. Multi-objective problems
have been explored in variants of cgpGAs by [Husbands, 1991] and [Cohoon,
1988]. Fine-grain parallel GAs also offer the ability to perform multi-objective
optimization. It will be very interesting to see how the placement of objectives
in subpopulations affects the abilities of the GAs. For example, all of the
subpopulations with one objective could be placed close to each other, so that
'inner' subpopulations are surrounded only by others which have the same
objective. Alternatively, the objectives could be assigned to the subpopulations
in an interleaved manner. The formation and assimilation of niches will certainly
play an integral role in the abilities of the GA to successfully optimize each of
the objectives. Niche formation has been studied in massively parallel
architectures by [Davidor, 1991].

6.4.2 Subpopulation Interaction
The massive distribution of the fgpGAs allows flexibility in the design of the
interactions between populations. Three important issues which need to be
resolved are: with which other subpopulations each subpopulation should
interact, what the interaction should be, and how often the interactions should
occur. For the problems which were tested, the 2D array topology worked well.
This topology allowed for a rapid flow of genetic information, which is desirable
in easy problems as good solutions can rapidly propagate. However, for harder
problems, fast flow may not be a desirable property. A slower flow may prove its
worth in the cases in which independent evolutions are needed to successfully
optimize the function. Experimenting with time-varying and adaptive flows
might also achieve impressive results; however, this may add another level of
complexity to fgpGA design.

The three fgpGAs presented vary with respect to with which subpopulations may
interact. The frequency and type of interactions (simply selecting one at random
from the two evolved at the neighbor) have remained constant. However, the
configuration used may be far from optimal. Fine-grain parallel genetic
algorithms, and parallel genetic algorithms in general, still encompass a level of
complexity which is not fully understood. The empirical results here are presented
with the hope that they may help form insights into more rigorous models of the
interactions in parallel GAs.

Acknowledgments
I would like to thank Dean Pomerleau, Stephen Smith, Todd Jochem, and Chuck
Thorpe for their many helpful comments and suggestions throughout the
development of this paper. This paper is dedicated to the memory of Dr. Gunar
Liepins.

15

This research was partly sponsored by Defense Advanced Research Projects
Agency, under contracts "Perception for Outdoor Navigation" (contract number
DACA76-89-C0014, monitored by the U.S. Army Topographic Engineering
Center) and "Unmanned Ground Vehicle System" (contract number DAAEO7-90-
C-R059, monitored by TACOM). It was also partially sponsored by the National
Science Foundation, under NSF Contract BCS-9120655, titled "Annotated Maps
for Autonomous Underwater Vehicles", and the NSF grant titled "Massively
Parallel RealTime Computer Vision". The views and conclusions contained in
this document are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, the National Science Foundation, or the U.S.
Government.

References
Baluja, S. (1993) The Evolution of Genetic Algorithms: Towards Massive

Parallelism. To Appear in P.E. Utgoff, ed., Machine Learning: Proceedings
of the Tenth International Conference. Morgan Kaufmann Publishers, San
Mateo, CA.

Baluja, S. (1992) A Massively Distributed Parallel Genetic Algorithm. CMU-
CS-92-196R. School of Computer Science, Carnegie Mellon University.

Caruana, R. and J. Schaffer (1988) Representation and Hidden Bias: Gray Vs.
Binary Coding for Genetic Algorithms. Proceedings of the 5th International
Conference on Machine Learning. Morgan Kaufmann. Los Altos. CA. June
1988 152-161.

Cobb, H. (1990) An Investigation Into the Use of Hypermutation as an Adaptive
Operator in Genetic Algorithms Having continuous, Time Dependent
Nonstationary Environments. NCARAI Library. AlC-90-00 l.

Cohoon, J.P., S.U. Hedge, W.N. Martin and D. Richards (1988), Distributed
Genetic Algorithms for the Floor Plan Design Problem. Technical Report
TR-88-12. School of Engineering and Applied Science, Computer Science
Department, University of Virginia.

Collins, R. and D. Jefferson (1991) Selection in Massively Parallel Genetic
Algorithms. Proceedings of the Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann, San Mateo, CA.

Davidor, Y (1991) A Naturally Occurring Niche and Species Phenomenon: The
Model and First Results. Proceedings of the Fourth International Conference
on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

DeJong, K.A. (1975) An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. (Doctoral dissertation, University of Michigan).
Dissertation Abstracts International 36-10, 5140B.

DeJong, K.A. and W. Spears (1990) An Analysis of MultiPoint Crossover.
NCARAI Library. AIC-90-014.

Eshelman, L. (1990). The CHC Adaptive Search Algorithm: How to have safe
search when engaging in nontraditional genetic recombination. Foundations
of Genetic Algorithms, Bloomington, IN.

Forrest, S. and A. Perelson (1990) Genetic Algorithms and the Immune System.
Parallel Problem Solving from Nature, H.P. Schwefel and R. Manner, Eds.
Springer-Verlag, Berlin.

16

Forrest, S. and M. Mitchell (1993) What Makes a Problem Hard for a Genetic
Algorithm? Some Anomalous Results and Their Explanation. To Appear in
Machine Learning.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley. Grosso, P. (1985) Parallel
Subcomponent Interaction in a Multilocus Model. Ph.D. Dissertation.
Computer and Communication Sciences, University of Michigan.

Hillis, D. (1990) Co-evolving Parasites Improve Simulated Evolution as an
Optimization Procedure. Physica D. 42. 228-234. North-Holland,
Amsterdam.

Holland (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: The
University of Michigan Press.

Husbands, E, E Mill and S.Warrington (1991) Genetic Algorithms, Production
Plan Optimisation and Scheduling. Parallel Problem Solving from Nature,
H.P. Schwefel and R. Manner, Eds. Springer-Verlag, Berlin.

Ingber, L. and B. Rosen (1992) Genetic Algorithms and Very Fast Simulated
Reannealing: A comparison. To be published in Mathematical and Computer
Modelling.

Liepins, G.E. and S. Baluja (1991) apGA: an Adaptive Parallel Genetic
Algorithm. Computer Science and Operations Research, New Developments
in Their Interfaces, Balci, Sharda and Zenios, Eds. Pergamon Press, 1992.

Liepins, G.E. and M.D. Vose (1990) Representational Issues in Genetic
Optimization, Journal Expt. Theor. Artificial Intelligence, 2, 101 - 115

Muhlenbein, H. (1989) Parallel Genetic Algorithms, Population Genetics and
Combinatorial Optimization. Proceedings of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.

Schaffer, J.D., R.A. Caruana, L.J. Eschelman, and R. Das (1989). A Study of
Control Parameters Affecting Online Performance of Genetic Algorithms for
Function Optimization, In J.D. Schaffer (Ed.) Proceedings of the Third
International Conference on Genetic Algorithms. Morgan Kaufmann, San
Mateo, CA.

Schleuter, M.G. (1990), Explicit Parallelism of Genetic Algorithms through
Population Structures. Parallel Problem Solving from Nature, H.P. Schwefel
and R. Manner, Eds. Springer-Verlag, Berlin.

Spiessens, P. and B. Manderick (1991) A Massively Parallel Genetic Algorithm:
Implementation and First Results. Proceedings of the Fourth International
Conference on Genetic Algorithms. Morgan Kaufman, San Mateo, CA.

Syswerda, G. (1989) Uniform Crossover in Genetic Algorithms, In J.D. Schaffer
(Ed.) Proceedings of the Third International Conference on Genetic
Algorithms. Morgan Kaufmann, San Mateo, CA.

Tanese, R. (1989). Distributed Genetic Algorithms. In J.D. Schaffer (Ed.)
Proceedings of the Third International Conference on Genetic Algorithms.
Morgan Kaufmann, San Mateo, CA.

Whitley, D. and T. Starkweather (1990). GENITOR II: a Distributed Genetic
Algorithm, Journal Expt. Theor. Artificial Intelligence, 2, 189-214.

	Practical Handbook of GENETIC ALGORITHMS: New Frontiers, Volume II
	Table of Contents
	Chapter 6: Structure and Performance of Fine-Grain Parallelism in Genetic Search
	Abstract
	6.1 Introduction
	6.1.1 The Motivation Behind Parallelism
	6.1.2 Massive Parallelism

	6.2 Three Fine-Grain Parallel GA Topologies
	6.3 Performance of fgpGAs and cgpGAs
	6.3.1 Description of Algorithms Compared
	6.3.2 The Problems Attempted
	6.3.3 Results and Discussion

	6.4 Future Directions
	6.4.1 Test Problems
	6.4.2 Subpopulation Interaction

	Acknowledgments
	References

	© 1995 by CRC Press, Inc: © 1995 by CRC Press, Inc.

