
Chapter 7

Kelvin K. Yue
Department of Computer Science

David J. Lilja
Department of Electrical Engineering
University of Minnesota
200 Union Street S.E.
Minneapolis, MN 55455

yue@cs.umn.edu
lilja@ee.umn.edu

Parameter Estimation for a Generalized Parallel L oop Scheduling
Algorithm

Abstract
7.1 Introduction
7.2 Current Scheduling Algorithms
7.3 A New Scheduling Methodology

7.3.1 A Generalized Loop Scheduling Algorithm
7.3.2 Parameter Estimation

7.3.2.1 GA Engine
7.3.2.2 Multiprocessor Simulator

7.4 Results
7.4.1 New Scheduling Algorithms
7.4.2 Performance Comparisons

7.5 Conclusion

Abstract
Algorithms that dynamically schedule parallel loop iterations in a shared-memory
multiprocessor have been proposed to balance the processors' workload while
maintaining low scheduling overhead. However, none of the existing strategies
perform well for all types of loops on all types of system architectures. We
present a generalized loop scheduling algorithm that can be adjusted to match the
loop characteristics to the system environment. A new method of simulation
using the Genetic Algorithm is developed to determine appropriate scheduling
parameters. This approach allows us to quickly choose sets of scheduling
parameters for different loops executing on different systems. Stochastic
simulations show that our parameterized strategies perform at least as well as the
best existing algorithms for different combinations of loop iteration
characteristics and system assumptions. Our generalized strategy is thus more
robust than existing strategies.

7.1 Introduction
Since the body of a loop may be executed multiple times, exploiting loop-level
parallelism is an effective means of increasing performance in a shared-memory
multiprocessor system [9]. Parallel loop scheduling algorithms, such as chunk
scheduling [8], self-scheduling [3], guided self-scheduling [12], factoring [7], and
trapezoid self-scheduling [13], have been proposed to evenly distribute the
workload among the processors while maintaining low scheduling overhead.
However, the performance of these scheduling algorithms is sensitive to the loop
characteristics and the system architecture so that no single algorithm performs
well for all types of loops on all types of system architectures [14].

In this chapter, we propose a generalization of the current parallel loop scheduling
algorithms in which the scheduling characteristics are parameterized. By using
this generalized algorithm, we can quickly adjust the scheduling strategy to match
the loop characteristics to the system environment. As the combinations of
scheduling strategies, loop characteristics, and system environments are
enormous, a new simulation method involving the Genetic Algorithm is
developed to estimate the scheduling parameters needed to achieve good
performance.

The use of the Genetic Algorithm for multiprocessor scheduling has been
previously proposed [6, 11], but these methods depend on knowing a priori
precise task information, such as the order of the tasks' execution, the task arrival
times, the exact execution times, and the dependences between tasks. These
methods then generate a schedule specific to this set of tasks. These methods are
not feasible for loop-level parallelism since the time needed for finding a schedule
may be longer than the loop execution time and, in many cases, the loop
characteristics are unknown until run-time. Instead of finding a specific schedule,
our proposed method uses the Genetic Algorithm to find appropriate values for
the parameters of the generalized scheduling algorithm to produce a specific
scheduling strategy or algorithm. This algorithm, then, is used at run-time to
dynamically generate the actual schedule for executing the loop iterations.

Two new scheduling strategies are found using this method, one of which is
suitable for scheduling loops with small iteration execution time variances, while
the other is suitable for loops with large variances. They perform as well as, or
better than, existing algorithms. Since the scheduling parameters of our
algorithms can be adjusted based on the changes in the loop characteristics or
system environments, our generalized method is more robust.

This chapter is organized as follows: Section 7.2 provides background
information on existing parallel loop scheduling strategies. Section 7.3 presents
our methodology for finding scheduling parameters using the Genetic Algorithm,
while Section 7.4 discusses the simulated results of applying this strategy to
loop-level parallelism. Section 7.5 concludes the chapter.

7.2 Current Scheduling Algorithms
In this section, the current techniques for scheduling Doall loop iterations on a
shared-memory multiprocessor system, such as that shown in Figure 7.1, are
reviewed. A performance comparison of these algorithms is also presented.

P P P P

Interconnection Network

Shared Memory

0 1 2 3

Figure 7.1: Shared memory multiprocessor architecture.

A Doall loop is the simplest form of parallelizable loop. In this type of loop
each iteration is independent of the other iterations so that the iterations can be
executed concurrently as independent tasks. An example of a Doall loop is:

DO i=I,N
a(i) = b(i) + c(i)

END DO

The iterations of a Doall loop are assigned to the processors to execute based on
some loop scheduling strategy. There are two main categories of scheduling
algorithms: static and dynamic [9]. Static scheduling, or prescheduling, assigns
iterations to the processors at compile time. Each processor knows exactly which
iterations it should execute before the program is invoked and, therefore, there is
no scheduling overhead. For example, the compiler could assign iterations to the
processors based on the processor number so that processor 0 executes iterations
1, P + 1, 2P + 1,..., processor 1 executes iterations 2, P + 2, 2P + 2,..., and so
on, where P is the number of processors. The main disadvantage of static
scheduling is load imbalance [2]. This unequal distribution of work to the
processors can be caused by differences in the iteration execution times, or by
differences in the number of iterations each processor executes. Since the schedule
of iteration execution is fixed at compile-time, it cannot be adjusted based on the
dynamically varying workload of the processors.

Dynamic scheduling assigns iterations to processors at run-time and can therefore
adjust the schedule to the processors' workload. Self-scheduling is the simplest
form of dynamic scheduling. With self-scheduling, each idle processor obtains the
index of the next iteration it should execute by accessing a shared work queue. By
taking one iteration at a time, this algorithm balances the workload very well,
but the scheduling overhead is large since the shared work queue must be accessed
once for each iteration.

To reduce the scheduling overhead, chunk scheduling assigns groups of iterations
as a single unit to the processors. Kruskal and Weiss [8] analyzed load imbalances
with this strategy and proposed the optimal chunk size to

be 2Nh() σP log P()[]2 3
, where N is the number of iterations, P is the number

of processors, σ is the standard deviation of the distribution of iteration execution

times, and h is the scheduling overhead. They assume that the central-limit
theorem holds for the iteration execution times, which is valid only when N is
large.

Another approach to reduce load imbalance while maintaining low scheduling
overhead is to decrease the chunk size as the program executes. There are two
strategies for decreasing the chunk size: linear decreases and nonlinear decreases.
Guided self-scheduling (GSS) [12] decreases the chunk size nonlinearly by
allocating iterations with a chunk size equal to R/P, where R is the number of
iterations remaining to be executed. This algorithm allocates large chunk sizes at
the beginning of a loop's execution to reduce the scheduling overhead. As the
number of iterations remaining to be executed decreases, smaller chunks are
allocated to balance the load.

The factoring scheduling algorithm (FS) [7] is similar to GSS except that it
allocates iterations in batches of P equal-sized chunks. After a batch is scheduled,
the new chunk size is calculated to be R/(xP), where R is the number of
iterations remaining, and x typically is chosen to be 2. The initial chunk size for
FS is smaller than GSS. As a result, it has more iterations remaining at the end
of the loop's execution to balance the load. However, FS requires many more
scheduling steps than GSS. To reduce the number of scheduling steps, safe self-
scheduling [10] proposes to use an x factor smaller than 2 so that more iterations
will be allocated per chunk. However, the calculation of the x factor for safe self-
scheduling requires knowing not only the maximum and minimum iteration
execution times, but also the probability of branching for the conditional
statements in the loop. Safe self-scheduling may be less robust than factoring or
guided self-scheduling since these characteristics typically are not known until
runtime.

Trapezoid self-scheduling (TSS) [13] decreases the chunk size linearly to achieve
a better tradeoff between the scheduling overhead and the distribution of the
processors' workload compared to the nonlinear strategies. The number of
chunks, C, is equal to [2N/(f + l)] and the chunk size is decreased by a factor of
(f- l)/(C - 1) at each scheduling step, where typically f = N/(2P) and l = 1. TSS
does not allocate chunks as large as GSS in the beginning, and it does not require
as many scheduling steps as FS. However, the linearly decrementing chunk size
may create large load imbalances if the execution time differences between the
last few chunks are large.

To summarize, one-iteration-at-a-time self-scheduling can perfectly balance the
workload but it generates a large scheduling overhead that adds directly to the
overall execution time. Chunk scheduling, on the other hand, requires minimum
overhead, but it produces greater load imbalance. Guided self-scheduling,
factoring, and trapezoid self-scheduling use a variable chunk size to tradeoff load
imbalances with the scheduling overhead. However, the performance of these
algorithms is sensitive to the characteristics of the loop and the system
environment so that no single algorithm performs best in all cases [14, 15]. For
instance, if the variance in iteration execution times is large, GSS may not
balance the workload well since it does not save enough single-iteration chunks

until the end [7, 13]. Factoring saves enough single-iteration chunks to balance
the load, but with small variances in iteration execution times, these chunks
cause extra scheduling overhead [9]. Trapezoid self-scheduling assigns small
initial chunks, as does factoring, and it requires fewer scheduling steps than GSS
[15], but the difference in execution time between the last few chunks might be
large due to the linear decrement in the chunk size. This large difference may
create correspondingly large load imbalances [7].

7.3 A New Scheduling Methodology
In the previous section, we reviewed five dynamic scheduling algorithms and
concluded that no single algorithm produces the best performance in all cases. To
match the scheduling algorithms to the loop characteristics and system
environments, one can exhaustively try all of the strategies for all types of loops
on all types of systems. However, this is obviously infeasible, if not impossible.

We propose a generalization of all of these scheduling algorithms in which the
scheduling characteristics are parameterized and, therefore, can be easily adjusted
to match the scheduling algorithm to both the individual loop and the system
architecture. We also develop a new simulation methodology that uses the
Genetic Algorithm as a heuristic search engine to choose appropriate parameters
for the generalized scheduling strategy.

This section details the generalization of the scheduling algorithms and presents
the simulation methodology. The implementation of the Genetic Algorithm is
also described.

7.3.1 A Generalized Loop Scheduling Algorithm
As discussed in Section 7.2, there are two primary types of dynamic scheduling
algorithms: those that use a fixed chunk size based on the total number of
iterations, and those that use a variable chunk size based on the remaining
number of iterations. The first step of the generalization is to define a pargreeter
X which is equal to N , the total number of iterations, if the scheduling strategy
uses a fixed chunk size. Otherwise, X is equal to R , the remaining number of
iterations, if the strategy uses a variable chunk size.

Notice that the chunk size for the current scheduling algorithms is related to the
total number of processors, P. For instance, the chunk size for chunk scheduling
is N/P, for GSS it is R/P, for FS it is R/2P, and the initial chunk size for
TSS is N/2P. Therefore, the chunk size for our generalization is in terms of
aX/fP. The parameter f is used to represent the factoring size giving f = 1 for CS
and GSS, and f = 2 for FS. We also introduce another adjustment factor, a, to
make our generalization more versatile by not limiting the scheduling algorithm
to only integer factors.

To include all of the possible chunk sizes while allowing the chunk size to be
decremented either linearly, as in TSS, or nonlinearly, as in GSS and FS, the
parameter l is introduced and the generalization is refined to aX fP − l For fixed-

sized scheduling algorithms, or for variable-sized scheduling algorithms with a
nonlinearly decreasing chunk size, l is used as a refining factor. For instance, if

chunk scheduling is used where the chunk size is determined to be some integer
value that cannot be calculated with only aX fP , then l is set to a constant value

to adjust the chunk size to the desired value. On the other hand, if a linearly
decrementing chunk size strategy is used, l is a function of the scheduling step.

In TSS, for example, l = i × N
2P

−1

2N
2P +1

−1

 where i is the current

scheduling step. As the execution proceeds, the number of the scheduling step is
increased, which causes the chunk size to decrease linearly.

In our generalization, we also include a parameter, m, for a minimum chunk size
feature as suggested in [12]. If the calculated chunk size is smaller than m , a
chunk size of m is used instead. Also, the parameter C is the number of chunks
with the same size that are scheduled before the chunk size is recalculated. In FS,
C is equal to P, while for the other scheduling algorithms, C is always 1. Note
that C can take on any value in our generalization.

The generalization of loop scheduling algorithms is summarized as follows:

The number of iterations per chunk, K, is determined by:

K = a

f

X

P
− l

 if K > m,

K = m otherwise,

and C batches of the same chunk size, K, are scheduled before K is recalculated.

In the above expression, a and f are the adjusting factors, X is equal to N , the
total number of iterations, if the strategy uses a fixed chunk size, or X is equal to
R , the number of iterations remaining to be executed, if the strategy uses a
variable chunk size, P is the number of processors, l is the linear decrement

factor, and m is the minimum chunk size allowed. The following table shows the
parameter values that will produce specific scheduling algorithms:

Algorithm C a f X l m

Self Scheduling 1 P N N 0 1
Chunk Scheduling 1 # a N 0 1
Guided Self-Scheduling 1 # a R 0 1
Factoring P # 2a R 0 1
Trapezoid Self-Scheduling 1 # a N δ 1

The symbol # represents any positive integer and δ = i
N

2P
−1

2N
2P +1

−1

where i is the current scheduling step. For CS, GSS, FS, and TSS, we can
choose any positive integer for parameter a by properly choosing the
corresponding parameter f. In addition to the values shown in the table, self-

scheduling can also be represented with the parameters a = f = 1, X = N , l =

(N/P) - 1, C = 1, m = l.

Based on this generalization, we have shown that we can parameterize the
different existing loop scheduling strategies. This generalization allows us to
select the desired scheduling algorithm, and it allows us to produce completely
new scheduling algorithms, by choosing the appropriate parameters. As a result,
we can easily adjust the scheduling algorithm to match the loop characteristics to
the system environment.

7.3.2 Parameter Estimation
To utilize the generalized scheduling algorithm, a quick and simple method for
matching the scheduling parameters to the loop characteristics and the system
environment is needed. As previously mentioned, it is infeasible, if not
impossible, to exhaustively test all the parameter combinations to determine
which one generates the best performance. Therefore, we develop a new
simulation methodology that uses the Genetic Algorithm (GA) as the means to
determine appropriate parameters.

Our simulation consists of two modules: the GA engine and the multiprocessor
simulator (Figure 7.2). The GA engine generates possible scheduling strategies
and then sends them to the multiprocessor simulator for evaluation. The
multiprocessor simulator simulates a shared memory multiprocessor environment
executing a Doall loop based on the given scheduling strategies. It returns a
measure of the performance of each strategy to the GA engine, which then creates
new strategies based on the simulated performance of the previous strategies. In
the following subsections, the implementations of the GA engine and the
multiprocessor simulator are presented in detail.

7.3.2.1 GA Engine
The Genetic Algorithm (GA) [5] has been applied to a wide variety of areas,
ranging from artificially intelligent machine learning to gas pipeline control
systems, since it was first introduced

Traces of Iteration
Execution Times

Multiprocessor
Simulator

Scheduling
Strategy

Performance
Measure

GA Engine

Figure 7.2: Simulation environment for estimating the parameters of the
generalized scheduling algorithm.

approximately twenty years ago. It has been proven to be a robust and efficient
algorithm for searching and optimization problems [4]. GA is based on the
concept of natural selection and adaptation and the idea of survival of the fittest.
GA is different from other optimization and search algorithms in four important
characteristics [4]:

1. GA works with a coding of the parameter set, not the parameters themselves.

2. GA searches from a population of points, not just a single point.

3. GA uses payoff (objective function) information, not derivatives or other
auxiliary knowledge.

4. GA uses probabilistic transition rules, not deterministic rules.

These characteristics of the Genetic Algorithm combine both exploration and
exploitation in the searching process [1]. Unlike the hillclimbing search, which
is simply exploitation, GA explores new domains in the search space and will
not be limited to local maxima. Unlike random search, GA uses the known
results to guide it to a better solution, thereby making the search process more
efficient. Moreover, GA is more feasible than a brute-force trial-and-error method
since it does not try every possible parameter combination in the search space.
Therefore, we think that the Genetic Algorithm can be used in our simulation to
find estimates of the scheduling parameters based on the system environment.

In the following subsections, the genetic operations of GA are reviewed and the
representation and implementation of our generalized scheduling algorithm in the
Genetic Algorithm framework is presented.

Implementation The parameters for the scheduling strategy are represented in
the chromosome format shown in Figure 7.3. The parameters l, f, a, C , and m

are described in Section 7.3.1. Their binary representations are decoded into
integer values in the simulator. The bits X and l are condition bits. If bit X is

one, N , the total number of iterations, is used. Otherwise, R , the remaining
number of iterations, is used. If bit l is one, the linear decrement strategy is used.

GA does not impose any specific rules in designing or coding of a chromosome,
and the quality of the resultant solutions does not depend on the arrangement of
the parameters within the chromosome due to the robustness of the Genetic
Algorithm [4].

0 5 6 11 14 16 17 23 24 31

l f a mC

X L

Figure 7.3: Chromosome representation for the generalized loop scheduling
strategy.

The fitness function for a chromosome is the parallel execution time efficiency of
a Doall loop executed using the scheduling strategy encoded in the chromosome.
It is calculated as:

E = Speedup

P
= Sequential Run − time

P × Parallel Run − time

The sequential run-time is the sum of all iteration execution times, excluding the
scheduling overhead, which is equivalent to the execution time for the Doall loop
when it is executed on a sequential machine. The parallel run-time is the total
execution time of the last processor to finish executing.

7.3.2.2 Multiprocessor Simulator
After a set of scheduling parameters is generated by the GA engine, its
performance then needs to be evaluated. In this experiment, we use a simple
stochastic simulation model. It is possible, however, to use a more complicated
simulation, or even a real multiprocessor system, for the performance evaluation.

This module simulates a shared memory multiprocessor system with P
processors, all of which execute at the same speed. When a processor is idle, it
locks the loop index variable to determine the next chunk of iterations it will
execute. It then unlocks the loop index variable and begins executing the
iterations. The number of iterations a processor assigns itself at each scheduling
step, i.e., the size of a chunk, is determined by the scheduling strategy. When
two or more processors attempt to simultaneously access the loop index, the one
with the smallest processor identification number is allowed to go first. The delay
introduced by this contention adds directly to the execution time of the stalled
processors. The specific scheduling strategy used in the simulator is dynamically
configured according to the information sent from the GA Engine.

The execution times of the iterations are generated by a random number generator
with a normal (Gaussian) distribution. The mean and variance of the iteration
execution times are specified based on the types of the loops [14]. Again, it is
possible to use more complicated methods to generate traces of the iteration
execution times, but we use the simplest method to demonstrate our scheduling
strategy. At the end of the simulation, the efficiency of the scheduling strategy is
calculated and returned to the GA engine where it is used as the fitness value of
the chromosome that defines the given scheduling strategy. The following
algorithm summarizes the simulation environment:

/* Initialization */
randomly generate the initial population

FOR each chromosome in the population
/* begin multiprocessor simulation */
simulate the scheduling strategy
measure the efficiency

/* end multiprocessor simulation */
use the efficiency value as the fitness of the chromosome

ENDFOR

DO until (population converges) or (no. of generations >
predefined value)

/* Selection Phase */
select the chromosomes with the highest fitness values

/* Reproduction Phase */
generate the new chromosomes using crossover operator
and mutation operator.

/* Evaluation Phase */
FOR each chromosome in the new population

/* begin multiprocessor simulation */
simulate the scheduling strategy
measure the efficiency

/* end multiprocessor simulation */
use the efficiency value as the fitness of the
chromosome

ENDFOR
ENDDO

7.4 Results
We use the simulation methodology discussed in the previous section to match
scheduling algorithms to the loop characteristics while varying the number of
processors, the number of iterations, the scheduling overhead, and the variance in
iteration execution times. The GA engine found that scheduling algorithms that
use a fixed chunk size, and algorithms that use a variable chunk size with linear
decrement, do not perform as well as the other algorithms. The GA engine
discovered two new scheduling algorithms that perform as well as, or better than,
existing scheduling algorithms. We call these two new algorithms CS-2 and FS-
alt due to their similarity to chunk scheduling and factoring, respectively. CS-2 is
similar to chunk scheduling in that it uses N/P iterations per chunk, except it
saves 2P single-iteration chunks to balance the load at the end. FS-alt is similar
to factoring except that it uses a larger factor and it allocates fewer chunks per
batch. In this section, these two new scheduling algorithms are presented and
their performance is compared with the other scheduling algorithms.

7.4.1 New Scheduling Algorithms
CS-2 allocates iterations with two different chunk sizes it has 2P chunks with 1
iteration per chunk and P chunks with N/P - 2 iterations per chunk. When the
loop execution begins, each processor acquires a chunk with N/P - 2 iterations
and starts executing. Near the end of the execution, the single-iteration chunks are
used to dynamically balance the workload among the processors. The total
number of scheduling steps, that is, the number of accesses to the shared work
queue, for CS-2 is 3P. CS-2 is suitable for loops with small variances in
iteration execution times. Standard chunk scheduling cannot balance the variation
well for this type of loop while other dynamic scheduling algorithms require too
many scheduling steps and, thus, are too costly for effectively balancing this
small variation. For loops with large variances in execution times, CS-2, similar

to standard chunk scheduling, does not perform well compared to other dynamic
scheduling algorithms.

FS-alt, on the other hand, performs well for loops with large variances. It is
similar to factoring, except that it uses a factor of 5/6 instead of 1/2, and it uses
P/2 chunks per batch instead of P chunks per batch. FS-alt improves on the
performance of factoring by allocating larger chunks at the beginning of the
execution and, therefore, reducing the number of scheduling steps. To compensate
for the larger chunk sizes, FS-alt allocates P/2 chunks per batch allowing it to
save enough small chunks to balance the processors' workload at the end of the
loop's execution. The following table shows the parameter values for CS-2 and
FS-alt from our generalization of the loop scheduling algorithm.

Algorithm C a f X l m

CS-2 P # a R 2 1
FS-alt P/2 5 6 R 0 1

7.4.2 Performance Comparisons
Figure 7.4 shows the speedup values of the two GA-generated scheduling
strategies compared to the current algorithms. The speedup is measured on a P =
16 processor system executing a Doall loop with an average iteration execution
time of 100 cycles. The overhead for scheduling a chunk of iterations is 10% of
the mean iteration execution time, or 10 cycles. The total number of iterations,
N, is set to 500 iterations and 5000 iterations while the variance in iteration
execution times is changed from 5 cycles to 70 cycles.

CS:Chunk Scheduling FS:Factoring GSS:Guided Self-scheduling SS:Self-scheduling TSS:Trapezoid Self-
scheduling CS-2, FS-aIt:GA Generated Scheduling Algorithms

Figure 7.4: Speedup comparisons of the different scheduling algorithms.

As shown in Figure 7.4, CS-2 performs better than the other scheduling
algorithms when the iteration execution time variances are small. As the variance
increases, CS-2's performance decreases with the same rate as standard chunk
scheduling. FS-alt performs slightly better than FS in both cases, but the

difference between the two in the N = 5000 case is quite small. The speedup of
SS and TSS are less than 15.5 when N = 5000 and are not shown in the figure.
The large scheduling overhead and poor load balancing are the causes of the poor
performance for SS and TSS, respectively.

The comparisons shown in Figure 7.4 are based on the assumption that all the
scheduling algorithms have the same scheduling overhead. It suggests that the
two GA-generated scheduling algorithms slightly improve the overall
performance. The scheduling overhead for some algorithms is much lower than
for the others, however. For instance, SS requires only a Fetch&Add operation to
obtain the next iteration while FS requires a more complicated calculation. To
eliminate this factor, Figure 7.5 compares the total number of scheduling steps
for all of the algorithms with different values of N, the total number of iterations,
on a 16-processor system. The total number of scheduling steps for SS is not
shown in the figure since it is simply the total number of iterations. This figure
shows that FS requires the most scheduling steps, and the number of scheduling
steps increases at a faster rate than the others as the total number of iterations
increases. FS-alt schedules iterations in a fashion similar to FS, but it requires
fewer total scheduling steps. CS-2 requires at least twice as many scheduling
steps as CS, but, as shown in Figure 7.4, it balances the workload more evenly
than CS.

Figure 7.5: Comparison of the number of scheduling steps.

The total number of scheduling steps not only directly contributes to the
scheduling overhead, but it also relates to the network and memory contention
since, as the number of scheduling steps increases, the chance of two or more
processors trying to access the shared loop index at the same time increases as
well. When one processor is accessing the loop index, all the other processors
which need to obtain additional work at the same time must wait. Figure 7.6
compares the processor execution times divided into three different categories: the
execution time, which is the time the processor spends executing the iterations,
the overhead, which is the time the processor spends calculating the chunk size

and accessing the shared loop variables, and the contention time, which is the
time the processor is idle waiting to access the shared variables or waiting for
synchronization. The sum of these three times is equal to the parallel execution
time of the Doall loop using the specific scheduling algorithm. We set the
average iteration execution times to 100 cycles and vary the number of processors
(P), the total number of iterations (N), the scheduling overhead (O), and the
iteration execution time variance (V).

In Figure 7.6(a), we have a 500-iteration Doall loop with a variance of 10 cycles
executing on a 16-processor system with a scheduling overhead of 10 cycles. SS
produces the largest scheduling overhead while, as expected, CS has the smallest.
The GA-generated algorithms, CS-2 and FS-alt, both have a small scheduling
overhead compared to the others. CS-2, FS, FS-alt, and GSS have similar
contentions and, therefore, the algorithms with lower scheduling overhead, i.e.,
CS-2 and FS-alt, have the lower total parallel runtime. We use Figure 7.6(a) as
the comparison baseline as we alter the system parameters. In Figure 7.6(b), the
total number of processors (P) is doubled. The average execution time for all of
the algorithms is halved as more processors share the same amount of work. The
scheduling overhead per processor is decreased since the processors do not need to
obtain work from the shared work queue as many times as in the baseline case.
The contention, or the processor idle time, is increased, however, since more
processors are competing to access the shared work queue. An opposite effect
occurs when the number of iterations (N) is doubled, as shown in Figure 7.6(c).
In this case, the processors spend more time executing the iterations since the
workload per processor is increased. The scheduling overhead is also increased
since more iterations need to be assigned, but the contention time is decreased
since there is more work for the processors and the processors are less likely to
wait idle.

Figure 7.6: Breakdown of processor execution times.

To compare the scalability of the scheduling algorithms, both the number of
processors (P) and the number of iterations (N) are doubled. The contention of all
of the algorithms is increased from the baseline since more processors are sharing
the single shared work queue. Self-scheduling (SS) suffers the most as it has to
access the shared work queue for each iteration and there are more iterations to be
executed, and more processors to compete for the work queue. CS-2, FS-alt, FS,
and GSS also have increased contention time, but they still outperform the other

algorithms. CS-2 and FS-alt have relatively little scheduling overhead comparing
to FS and GSS. As a result, these two scheduling algorithms have the shortest
overall parallel execution times.

From Figure 7.5, it is seen that FS requires more scheduling steps than any of
the other algorithms except SS. The effect of this factor on the overall
performance becomes more obvious when the overhead per scheduling step (O) is
doubled, as shown in Figure 7.6(e). Both the scheduling overhead and the
contention time for all of the scheduling algorithms are increased compared to the
baseline in Figure 7.6(a), since it takes longer to access the shared work queue,
and since the competing processors must wait idle longer. The performance of FS
degrades more than FS-alt and CS-2 because of its much greater number of
scheduling steps. CS-2 requires fewer scheduling steps than FS-alt, and, therefore,
the overall parallel execution of CS-2 is less than that of FS-alt.

To compare the algorithms' sensitivity to variances in the iteration execution
times, we measure the execution time after doubling the variance (V). Both CS
and TSS produce longer parallel execution times due to the larger load imbalance
induced by the larger variance. The performance of SS remains the same since it
always balances the workload perfectly. The increases in contention times for CS-
2 and GSS are larger than that of FS and FS-alt because they do not have enough
single-iteration chunks to balance the workload at the end of the loop's execution.
However, the overall execution times for CS-2 and FS-alt are still less than the
others, as shown in Figure 7.6(f).

In this section, we have compared the performance of the GA-generated
algorithms, CS-2 and FS-alt, with the current scheduling algorithms. The results
show that CS-2 has smaller scheduling overhead than the other algorithms and
that it outperforms the others when the iteration execution time variance is small.
FS-alt, on the other hand, has a larger scheduling overhead than CS-2, but it
produces better load balance when the iteration execution time variance is large.

7.5 Conclusion
In this chapter, a generalized scheduling algorithm is proposed in which the
scheduling strategy is parameterized and so can be adjusted to match the loop
characteristics and the system environment. A new simulation methodology
using the Genetic Algorithm is developed to find appropriate parameters for this
generalized scheduling. Two new scheduling algorithms, CS-2 and FS-alt, were
discovered using this simulation methodology. CS-2 is similar to CS, but it
improves the load balancing capability while maintaining a low scheduling
overhead. It is suitable for loops with small iteration execution time variances.
FS-alt, on the other hand, performs well for loops will large variances. It reduces
the scheduling overhead of FS by using a larger factor and a smaller batch size.

Based on simulated performance comparisons, the newly discovered algorithms
perform as well as, or better than, the existing algorithms. Since we can further
fine tune the parameters of our generalized scheduling algorithm by interfacing
the GA engine to a real multiprocessor system, or to a system of some other
architectural design, our scheduling algorithm is more robust than current
algorithms. Another possible use of the generalized scheduling algorithm is to

have a dedicated processor executing the GA engine to adjust the scheduling
parameters dynamically based on the status of the system and the loop execution.
A variety of other techniques can be used to determine appropriate values for the
parameters of this generalized loop scheduling algorithm.

References
[1] David Beasley, David R. Bull, and Ralph R. Martin. An Overview of Genetic
Algorithms: Part 1, Fundamentals, volume 15 of University Computing, pages
58-69. Inter-University Committee on Computing, University of Cardiff, Cardiff,
CF2 4YN, UK, 1993.

[2] Carl J. Beckmann and Constantine D. Polychronopoulos. The effect of
scheduling and synchronization overhead on parallel loop performance. In
International Conference on Parallel Processing, volume II: Software, pages 200-
204, 1989.

[3] Zhixi Fang, Pen-Chung Yew, Peiyi Tang, and Chuan-Qi Zhu. Dynamic
processor selfscheduling for general parallel nested loops. In Proc. 1987
International Conference in Parallel Processing, August 1987.

[4] David E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, Reading, Massachusetts, 1989.

[5] John Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, Michigan, 1975.

[6] Edwin S.W. Hou, Nirwan Ansari, and Hong Ren. A Genetic Algorithm for
Multiprocessor Scheduling. IEEE Transactions on Parallel and Distributed
Systems, 5:113-120, February 1994.

[7] Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring -
a method for scheduling parallel loops. Communciations of the ACM, 35:90
101, August 1992.

[8] Clyde P. Kruskal and Alan Weiss. Allocating independent subtasks on parallel
processors (extended abstract). In International Conference on Parallel Processing,
pages 236 240, 1984.

[9] David J. Lilja. Exploiting the parallelism available in loops. Computer,
pages 13-26, February 1994.

[10] Jie Liu, Vikram A. Saletore, and Ted G. Lewis. Scheduling parallel loops
with variable length iteration execution times on parallel computers. In ISMM
5th International Conference on Parallel and Distributed Computing Systems,
pages 83-89, October 1992.

[11] Hirak Mitra and Parameswaran Ramanathan. A genetic approach for
scheduling nonpreemptive tasks with precedence and deadline constraints. In 26th
Hawaii International Conference on System Sciences, volume 2, pages 556- 564,
1993.

[12] C. Polychronopoulos and D. Kuck. Guided self-scheduling: A practical
scheduling scheme for parallel supercomputers. IEEE Transactions on
Computers, C-36:1425-1439, December 1987.

[13] Ten H. Tzen and Lionel M. Ni. Trapezoid self-scheduling: A practical
scheduling scheme for parallel compilers. IEEE Transactions on Parallel and
Distributed Systems, 4:87-97, January 1993.

[14] Kelvin K. Yue and David J. Lilja. Categorizing parallel loops based on
iteration execution time variances (submitted for publication). 1994.

[15] Kelvin K. Yue and David J. Lilja. Scalability analysis for parallel loop
scheduling algorithms (submitted for publication). 1994.

	Practical Handbook of GENETIC ALGORITHMS: New Frontiers, Volume II
	Table of Contents
	Chapter 7: Parameter Estimation for a Generalized Parallel Loop Scheduling Algorithm
	Abstract
	7.1 Introduction
	7.2 Current Scheduling Algorithms
	7.3 A New Scheduling Methodology
	7.3.1 A Generalized Loop Scheduling Algorithm
	7.3.2 Parameter Estimation
	7.3.2.1 GA Engine
	7.3.2.2 Multiprocessor Simulator

	7.4 Results
	7.4.1 New Scheduling Algorithms
	7.4.2 Performance Comparisons

	7.5 Conclusion
	References

	© 1995 by CRC Press, Inc: © 1995 by CRC Press, Inc.

