
1

Chapter 9

Luis Rabelo Albert Jones Yuehwern Yih
ISE Department National Institute of School of Industrial Eng
Ohio University Standards and Technology Purdue University
Athens, OH 45701 Gaithersburg, MD 20899 W. Lafayette, IN 47907

A Hybrid Approach Using Neural Networks, Simulation, Genetic
Algorithms, and Machine Learning for Real-Time Sequencing and
Scheduling Problems

9.1 Introduction
9.2 Hierarchical Generic Controller
9.3 Implementing the Optimization Function

9.3.1 Candidate Rule Selection
9.3.2 Real-Time Simulation
9.3.3 Genetic Algorithms

9.3.3.1 Genetic Algorithms and Scheduling
9.3.3.2 Genetic Algorithms for Compromise Analysis

9.3.4 Inductive Learning Algorithm — TDKA
9.4 An Example
9.5 Remarks

Abstract
A hybrid approach for sequencing and scheduling is described which integrates
neural networks, real-time simulation, genetic algorithms, and machine learning.
This approach has been used to solve both single machine sequencing and multi-
machine scheduling problems. Neural networks are used to quickly evaluate and
select a small set of candidate sequencing or scheduling rules from some larger set
of heuristics. This evaluation is necessary to generate a ranking which specifies
how each rule performs against the performance measures. Genetic algorithms are
applied to this remaining set of rules to generate a single "best" schedule using
simulation to capture the system dynamics. A trace-driven knowledge acquisition
technique (symbolic learning) is used to generate rules to describe the knowledge
contained in that schedule. The derived rules (in English-like terms) are then added
to the original set of heuristics for future use. In this chapter, we describe how
this integrated approach works, and provide an example.

2

9.1 Introduction
Sequencing and scheduling are two of the most important decisions made by any
shop floor control system. But, while there has been an enormous research effort
expended over the years in these areas, it has had little effect in the marketplace.
The reason is simple, the research has led to the development of very few software
tools that can solve real problems. The tools that do exist are typically 1) too
slow and cannot react to changing shop floor conditions, 2) based on simplistic
formulations which ignore important constraints like material handling, 3) based
on a single objective function or simplistic trade-offs like goal programming, and
4) difficult to install and integrate into pre-existing commercial shop floor control
systems.

In this chapter, we describe a methodology which integrates neural networks,
simulation, genetic algorithms, and machine learning technniques. It determines
the start and finish times of the jobs assigned to any module in the hierarchical
shop floor control architecture proposed in (JONES and SALEH, 1990). Because
this hierarchy decomposes the global scheduling problem into multiple levels,
this methodology 1) never needs to solve very large problems, and 2) can react to
delays on the shop floor in a manner which is not disruptive to the rest of the
system. Moreover, by exploiting the parallel processing and modeling capabilities
of neural networks, simulation, and genetic algorithms it has the potential to be
extremely fast and highly adaptable to customer needs. Finally, the use of a
learning technique provides the additional capability to learn what works and what
does not work in a variety of situations and utilize that knowledge at a later time.
For these reasons, we believe that this technique has the potential to solve real-
world sequencing and scheduling problems in real-time.

The chapter is organized as follows. In section 9.2, we describe the generic
controller and shop floor hierarchy. In section 9.3, we describe the method for
generating start and finish times which is applicable at every level in that
hierarchy and the learning technique. In section 9.4, we provide an example.

9.2 Hierarchical Generic Controller
The foundation of this research is the generic controller developed in (DAVIS et
al., 1992) and the hierarchical shop floor control system described in (JONES and
SALEH, 1990). This hierarchy is based on a decomposition of the global planning
and scheduling problems, rather than the traditional partitioning of the physical
shop floor equipment. This new approach to building hierarchies led to the
fundamental contribution of (DAVIS et al., 1992) — that every controller in this
hierarchy performs the exact same four production management functions —
assessment, optimization, execution, and monitoring. We now give a brief
description of these functions (see Figure 9.1).

3

Feedback
to supervisor

Tasks and times
from supervisor

ASSESSMENT
FUNCTION

OPTIMIZATION
FUNCTION

Problem
formulation

Performance
statistics

Co
ns

tr
ai

nt

Ev
al

ua
tio

n

MONITORING
FUNCTION Current Control Schedule

Selected
Control Law

EXECUTION
FUNCTION

Assigned Tasks
and limit times

SUBORDINATE
PROCESS(ES)

Feedback

INTERFACE
MODULES

GENERIC CONTROLLER

Co
ns

tr
ai

nt
s

Figure 9.1 Generic controller module.

The Assessment Function formulates the real-time decision-making problems for
each control module. The exact nature of those decisions depends on the
hierarchical level at which the module resides (JACKSON and JONES, 1987). These
decisions can be thought of as optimization problems. This means that the
Assessment Function must specify both the constraints and the performance
measures. Two types of constraints are allowed: hard and soft. Hard constraints are
those that cannot be violated either by the other functions in the same module or
by modules in subordinate levels in the hierarchy. These constraints come from
three sources: supervisors, process plans, and the physical limitations of the
system. A supervisor may impose hard constraints such as due dates, priorities,
and maintenance schedules. The process planner may impose hard constraints in
the form of precedence relationships, tools, and fixturing requirements. Finally,
physical limits such as transfer times and queue sizes also result in hard
constraints.

The Assessment Function can also specify soft constraints to further control the
evolution and behavior of its subordinates. Typically, minor violations of these
constraints will be tolerated, but major violations indicate that the system may be
getting into trouble. For example start and finish times for the individual tasks
that make up a job can be viewed as soft constraints. As long as the job is on
time, delays in the start and finish times of some tasks can be tolerated. However,

4

as more and more of these tasks are delayed, the on-time completion of the job is
jeopardized. Other commonly imposed soft constraints are utilization rates for
subordinates and inventory policies. Unlike the hard constraints, these soft
constraints may be unknown to subordinates.

As noted above, the Assessment Function also specifies the performance criteria
for each optimization problem. There are typically several, possibly conflicting,
criteria to be considered simultaneously, which combine the "performance" of
subordinates and the "performance" of jobs. Examples of subordinate performance
include utilization and throughput. Examples of job performance include lateness,
tardiness, and makespan. Priorities can be assigned to particular jobs and weights
to particular performance criteria. All of these can be changed to reflect the current
state of the system.

The Optimization Function is responsible for solving these decision-making
problems posed by the Assessment Function. The solution consists of a)
selecting a run-time production plan for each job and b) selecting the start and
finish times for each of the tasks in that plan. The production plan identifies the
tasks and the resources needed to complete each job. It also includes all precedence
relations that exist among those tasks. This run-time plan is selected from the set
of feasible process plans passed down by the Assessment Function. Selecting the
start and finish times for these tasks may involve the solution of a single
machine sequencing problem, a multi-machine scheduling problem, a multi-cell
routing problem, or a resource (tools, fixtures, transporters) allocation problem.
All selections are made to optimize the current set of performance measures. In
addition to making these initial selections, the Optimization Function must deal
with violations of the constraints imposed by the Assessment Function. This
may involve the selection of new sequences, schedules, or plans.

The Execution Function implements the decisions selected by the Optimization
Function. Using the current state of the system, it does a single pass simulation
to compute the start and finish times for each task to be assigned to one of its
subordinate modules. In addition, when minor deviations from these times are
either reported or projected by the subordinates, the Execution Function attempts
to restore feasibility using techniques such as perturbation analysis or match-up
scheduling (JONES and SALEH, 1990).

Lastly, the Monitoring Function updates the system state using feedback from
subordinates, and evaluates proposed subordinate responses against the current set
of imposed (from the Assessment Function) and computed (by the Optimization
Function) constraints. It determines when violations occur, their severity, and
who should deal with them.

9.3 Implementing the Optimization Function
We now describe a methodology for solving the real-time sequencing and
scheduling (s/s) problems faced by the Optimization Function. This method
consists of a three step refinement process. The first step is to generate a set of
candidate s/s rules from a much larger set of heuristics. We have used single-
performance, neural networks as discussed in Section 9.3.1. We then evaluate
these candidates against all of the performance measures dictated by the

5

Assessment Function. This ranking is based on a real-time simulation approach
as discussed in Section 9.3.2. The last step is to use the top candidates from that
ranking as input to a genetic algorithm to determine the "best" sequence or
schedule. This is discussed in Section 9.3.3. In Section 9.3.4, we describe a
technique for extracting the knowledge contained in that schedule for future use.

9.3.1 Candidate Rule Selection
The first step in this process is to select a small list of candidate rules from a
larger list of available rules. For example, we might want to find the best five
dispatching rules from the list of all known dispatching rules so that each one
maximizes (or minimizes) at least one of the performance measures, with no
regard to the others. To carry out this part of the analysis, we have used neural
networks. This approach extends earlier efforts by (RABELO, 1990) and
(CHRYSSOLOURIS et al., 1991).

Neural networks have shown good promise for solving some classic, textbook
job shop scheduling problems. (FOO and TAKEFUJI, 1988) and (ZHOU et al.,
1990) have applied stochastic Hopfield networks to solve 4-job 3-machine and 10-
job 10-machine job shop scheduling problems, respectively. These approaches
tend to be computationally inefficient and frequently generate infeasible solutions.
(LO and BAVARIAN, 1991) extended the two-dimensional Hopfield network to 3
dimensions to represent jobs, machines, and time. Another implementation based
on stochastic neural networks applied to scheduling can be found in (ARIZONO
et al., 1992). However, they have been unable to solve real scheduling problems
optimally because of limitations in both hardware and algorithm development.

These implementations have been based on relaxation models (i.e., pre-assembled
systems which relax from input to output along a predefined energy contour). The
neural networks are defined by energy functions in these approaches. (LO and
BAVARIAN, 1991) formulated the objective function which minimizes
makespan as

E t = (1/2) ∑∑∑∑j=1 ∑∑∑∑ i=1∑∑∑∑ l=1 (vijl/Ck) (l + Tij - 1)

where Ck is a scaling factor; v ijl is the output of neuron ij l , and Tij is the

time required by jth machine to complete the ith job.

However, due to a large number of variables involved in generating a feasible
schedule, it has been difficult for these approaches to solve realistic job shop
scheduling problems with multiple objectives. It is even difficult to get a good
suboptimal solution when attempting to solve problems in real-time.

There are four reasons to select neural networks as candidate rule selectors. First,
because of the decomposition that results from the hierarchical control architecture
we are using, we never have to solve the global shop floor scheduling problem all
at once. Since it is decomposed into several scheduling and sequencing problems
(of smaller size and complexity), we don't anticipate the kinds of problems
described above. Second, it is no longer necessary to resolve the global problem
each time a minor delay occurs or a new job is put into the

6

system. Local rescheduling and resequencing can be done with little impact on the
overall shop floor schedule. Third, as discussed below, each neural network is
designed (i.e., they are presented with training sets of representative scheduling
instances and they learn to recognize these and other scheduling instances) to
optimize a single objective (e.g., minimization of work-in process inventory).
Neural networks in our approach are utilized as pattern recognition machines.
Neural networks assign a given shop floor status to a specific rule with some
degree. Finally, the solution from the neural networks is just the beginning of
this methodology, not the end. Therefore, a very fast technique is needed. Neural
networks are a proven real-time technique with speed (inherent from their
distributed/parallel processing nature), timeliness, responsiveness, and graceful
degradation capabilities.

In this research, we will focus our initial efforts on backpropagation neural
networks, because they are more developed and much faster than the relaxation
models described above (RUMELHART et al., 1988). Backpropagation applies
the gradient-descent technique in a feed-forward network to change a collection of
weights so that the cost function can be minimized. The cost function, which is
only dependent on weights and training patterns, is defined by:

C(W) = (1/2) ∑∑∑∑(Tip - Oip)2

where the T is the target value, O is the output of network, i is the output
nodes, and p is the number of training patterns.

After the network propagates the input values to the output layer, the error
between the desired output and actual output will be "back-propagated" to the
previous layer. In the hidden layers, the error for each node is computed by the
weighted sum of errors in the next layer's nodes. In a three-layered network (see
Figure 9.2), the next layer means the output layer. If the activation function is
sigmoid, the weights are modified according to

∆ W ij = h Xj (1- Xj)(Tj - Xj) Xi (9.1)
or

∆ W ij = h Xj (1- Xj) (S dkW jk) Xi (9.2)

where W ij is weight from node i to node j, h is the learning rate, Xj is the
output of node j, T j is the target value of node j , dk is the error function of
node k.

If j is in the output layer, Relation (9.1) is used. Relation (9.2) is for the nodes
in the hidden layers. The weights are updated to reduce the cost function at each
step.

7

Input Layer

Hidden Layer

Output Layer

Figure 9.2 An example of a three-layer feed-forward neural
network.

Network #1
Max Flow Time

Network #2
Mean Flow Time

Network #3
Max Tardiness

Network #4
Mean Tardiness

Network #5
Machine Util.

Network #6
Throughput

S
im

u
la

ti
on

A
n

al
ys

is
B

est rule for

m
ax flow

 tim
e

A Set of
Good Rules

Desired
Performance Level

Best rule for

m
ean flow tim

e

Bes
t r

ul
e

fo
r

th
ro

ug
hp

ut

Performance
of Each Rule

Figure 9.3 Architecture of the intelligent scheduling aid.

As indicated in Figure 9.3 our approach to developing the actual rule selector is to
have backpropagation neural network trained to rank the available rules for each
individual performance measure of interest (multiple performance evaluation
comes in the next section). The weights for each of these networks are selected
after a thorough training analysis. To carry out this training, we used two
methodologies: 1) off-line training and 2) on-line training.

8

Off-Line Training
In off-line training, it is needed to generate training data sets for each of these
performance measures from simulation studies. Suppose we wanted to train a
neural net to minimize the maximum tardiness and we wanted to consider the
following dispatching rules: SPT, LPT, FIFO, LIFO, SST, LST, CR, etc. (see
Figure 9.4). After simulating each of these rules off-line under a variety of input
conditions, we would be able to rank them to determine the best rule for this
measure (The example in Section 9.4 gives some of these simulation results.).
We would then use these results to train (i.e., choose weights) a neural net.

of jobs
in the queue

variance of
processing times

maximum
tardiness

 Current System

SPT

LPT

FIFO

LIFO

SST

LST

CR

 Performance Index

F
ilt

er

B
es

t R
ul

e

of tardiness
jobs

mean
tardiness

variance of
set-up times

Figure 9.4 Neural network training for maximum tardiness.

On-Line Training
In on-line training, adaptive critics concepts are utilized to train in real-time the
neural network structures (BARTO, 1992, WERBOS, 1992). Q-learning (a
derivation of adaptive critics) (WATKINS, 1989) is used to predict a scheduling
policy to meet the required performance criterion for a given queue status and
undefined period of operation and therefore accomplish an effective candidate rule
selector. The key idea of Q-learning is to assign values to state (shop floor
status)-action (scheduling policy) pairs. Q-learning does not need an explicit
model of the dynamic system underlying the decision problem. It directly
estimates the optimal Q values (i.e., ranking) for pairs of states and admissible
actions. The optimal Q value for state i (shop floor status) and action u (a
scheduling heuristic) is a cost of executing action u in state i . Any policy
selecting actions that are greater with respect to the optimal Q values is an
optimal policy. Actions are ranked based on the Q values. On the other hand,
ranking through an evaluation function requires more information like immediate
costs of state action pairs and state transition probabilities. Instead of state
transition probabilities Q-learning requires a random function to generate

9

successor states. The Q-value of the successful action is updated with learning
parameters, although with the other admissible actions, Q values remain the
same. Q-learning learns to accurately model the evaluation function. For a given
state x, the system (e.g., a neural network) chooses the action a, where the utility
util(x,a) is maximal. Q-learning consists of two parts: a utility function and a
stochastic action selector. The utility function implemented using a neural
network based on backpropagation works as both evaluator and policy maker. It
tries to model the system by assigning values to action-state pairs. The neural
network has multiple outputs, one for each action (as depicted in Figures 9.3 and
9.4).

We have initiated this training for a wide range of performance measures and
dispatching rules for a single machine sequencing and multiple machine
scheduling problems. We anticipate using these results for robots, machine tools,
material handling devices and inspection devices. They will form the lower level
of the two-level scheduling system which we are developing. Preliminary training
results are described in (RABELO et al., 1993).

The output from the rule selector phase will be a collection of R matched pairs —
{(performance measure, best rule)1, ..., (performance measure, best rule)R}. These
pairs form the candidates which are passed on to the next phase for more detailed
analysis.

9.3.2 Real-Time Simulation
After these R candidates have been determined, each of the rules must be evaluated
to determine the impact that each rule will have on the future evolution of the
system as measured from the current state of the system. In other words, we must
predict how it does against all of the performance measures simultaneously. To
carry out this analysis, we intend to use the technique developed by
(DAVIS/JONES 1989) termed real-time Monte Carlo simulation. Since R rules
must be considered, we plan to run R real-time simulations concurrently to avoid
unacceptable timing delays in the analysis.

This form of Monte Carlo simulation differs considerably from traditional
discrete-event simulation in two ways. First, each simulation trial is initialized to
the current system state as updated in real-time by the Monitoring Function. This
results in the second important distinction — these types of simulations are
neither terminating nor steady state. They are not terminating because the initial
conditions may change from one trial to the next. Furthermore, they are not
steady state because we are specifically interested in analyzing the transient
phenomena associated with the near-term system response. The question is, from
a statistical perspective, does this really matter. Early experiments conducted by
(DAVIS et al. 1991) indicate that the answer varies. That is, the inclusion or
exclusion of new events corresponding to changes in the initial state can bias the
statistical estimates of certain, but not all, performance measures.

The outputs from these simulation trials yield the projected schedule of events
under each scheduling rule. These schedules are then used to compute the values
of the various performance measures and constraints imposed by the Assessment
Function. The computed statistics are used to select and develop the rule which

10

provides the best statistical compromise among the performance criteria. In the
next section, we discuss a new approach to this compromise analysis, genetic
algorithms.

9.3.3 Genetic Algorithms
No matter how the utility function described above is constructed, only one rule
from the candidate list can be selected. This causes an undesirable situation
whenever there are negatively correlated performance measures, because no one
rule can optimize all objectives simultaneously. Conceptually, one would like to
create a new "rule" which 1) combines the best features of the most attractive
rules, 2) eliminates the worst features of those rules, and 3) simultaneously
achieves satisfactory levels of performance for all objectives. Our approach does
not deal with the rules themselves, but rather the actual schedules that result from
applying those rules. Consequently, we seek to generate a new schedule from
these candidate schedules. To do this, we propose to use a genetic algorithm
approach. Presently, we give a brief description of how genetic algorithms (GAs)
work. In the next section, we give some results from our preliminary
experimentation which demonstrates that this approach can actually generate new
and better schedules from existing ones.

9.3.3.1 Genetic Algorithms and Scheduling
GAs have been utilized in job shop scheduling. GAs could be utilized using the
following schemes:

(1) GAs with blind recombination operators have been utilized by GOLDBERG
and LINGLE (1985), DAVIS (1985), SYSWERDA (1990), and WHITLEY et al.
(1989). Their emphasis on relative ordering schema, absolute ordering schema,
cycles, and edges in the offspring will arise from differences in such blind
recombination operators.

(2) Sequencing problems have been also addressed by the mapping of their
constraints to a Boolean satisfiability problem (DE JONG and SPEARS, 1989)
using partial payoff schemes. This scheme has produced good results for simple
problems. However, this scheme needs more research.

(3) Heuristic genetic algorithms have been applied to job shop scheduling
(BAGCHI et al., 1991). In these GAs, problem specific heuristics are incorporated
in the recombination operators (such as optimization operators).

Example: Using a simple genetic algorithm for sequencing
This example illustrates the utilization of a simple genetic algorithm based on a
blind recombination operator for sequencing problems. The partially mapped
crossover (PMX) operator developed by GOLDBERG and LINGLE (1985) will be
utilized. Consider a single machine sequencing problem with 7 types of jobs.
Each job-type has its own arrival time, due date, and processing time
distributions. The set-up time is sequence dependent as shown in Table 9.1. The
objective is to determine a sequence that minimizes Maximum Tardiness for the
10-job problem described in Table 9.2.

11

Current job-type
Previous job-type 1 2 3 4 5 6 7
1 0 1 2 2 3 2 2
2 1 0 2 3 4 3 2
3 2 2 0 3 4 3 2
4 1 2 3 0 4 4 2
5 1 2 2 3 0 3 2
6 1 2 2 3 3 0 3
7 1 2 2 2 2 2 0

Table 9.1 Set-up times.

Job # Job Type Mean Processing Time Arrival Time Due Date
1 6 8 789 890
2 6 8 805 911
3 5 10 809 910
4 1 4 826 886
5 2 6 830 905
6 7 15 832 1009
7 6 8 847 956
8 3 5 848 919
9 1 4 855 919
10 4 3 860 920

Current Time: 863
Previous Job Type executed: 3

Table 9.2 10-Job problem description.

The simple genetic algorithm procedure developed (different possible procedures
could be developed, the one demonstrated is only for illustration purposes) for this
sequence problem could be described as follows:

1. Randomly generate n legal sequences (n is the population size, e.g., n = 50).

2. Evaluate each sequence using a fitness function (for this problem:
Minimization of Maximum Tardiness — the sequences will be ranked according
to their Maximum Tardiness — the lower the better)

3. Choose the best sequences (m sequences with the lower values for Maximum
Tardiness, m < n, e.g., 25).

4. Reproduction (e.g., duplicate them, stop when you have a population of n).
This reproduction could be in function of the fitness value (sequences with the
best fitness values will have higher probability to reproduce).

12

5. Crossover. Select randomly pairs of sequences. (Crossover could be applied to
the best sequences. However, the offspring do not replace their parents, but rather
a low ranking individual in the population (WHITLEY and STARKWEATHER,
1990). Apply PMX:

The PMX operator produces legal solutions by choosing a swapping interval
between two crossover points selected randomly. The offspring will inherit the
elements from the interval of one of the parents. Then, it is necessary to detect
and fix the illegal situations by mapping and exchanging. For example, consider
two sequences (A and B):

Posit ion: 1 2 3 4 5 6 7 8 9 1 0
A(Job Numbers): 9 8 4 5 6 7 1 3 2 10
B(Job Numbers): 8 7 1 2 3 10 9 5 4 6

Swapping interval (randomly generated): 4 to 6.
Posit ion: 1 2 3 4 5 6 7 8 9 1 0
A: 9 8 4 | 5 6 7 | 1 3 2 10
B: 8 7 1 | 2 3 10 | 9 5 4 6

Exchanging:
Posit ion: 1 2 3 4 5 6 7 8 9 1 0
A': 9 8 4 | 2 3 10 | 1 3 2 10
B': 8 7 1 | 5 6 7 | 9 5 4 6

Mapping and Exchanging to create legal sequences:
Posit ion: 1 2 3 4 5 6 7 8 9 10
A": 9 8 4 2 3 10 1 6 5 7
B": 8 10 1 5 6 7 9 2 4 3

6. Mutation (with a low probability, e.g., 0.1, exchange two arbitrary jobs'
position). (Mutation might not be applied to some schedules.)

Example: we have the following sequence 9 8 4 5 6 7 1 3 2 10,
applying mutation, the sequence could become 9 8 6 5 4 7 1 3 2 10,

Jobs 4 and 6 exchanged positions in the sequence.

7. Repeat (2) to (6), until no more improvements are possible.

After 17 iterations (approximately: 17 * 50 = 850 sequences were generated and
tested), the genetic algorithm produces the following sequence for this simple
problem (this took less than 500 milliseconds in a PC 486 @ 33MHz):

8 5 4 1 2 3 9 10 6 7 with a Maximum Tardiness of 2 (Fitness Function).

This is an optimal sequence. Studies of all possible combinations (10! =
3628800) produced Table 9.3 for the same sequencing problem. In addition,

13

Table 9.4 indicates some of the solutions por the same problem using dispatching
rules.

Maximum Tardiness (MT)

(Range)

2.<= MT < 6 6<=MT<10 10<=MT<13 13<=MT<=75

Number 68 1344 5568 3621820
of Possible Sequences

Table 9.3 Evaluating 3628800 Sequences (exhaustive search)

Dispatching Rule Sequence MT
SPT Shortest Processing Time 10 4 9 8 5 1 2 7 3 6 23
FIFO First-In/First-Out 1 2 3 4 5 6 7 8 9 10 32
EDD Earliest Due Date 4 1 5 3 2 8 9 10 7 6 10
LIFO Last-In/First-Out 10 9 8 7 6 5 4 3 2 1 65

Table 9.4 Using dispatching rules.

9.3.3.2 Genetic Algorithms for Compromise Analysis
The compromise analysis process carried out by a genetic algorithm can be
thought of as a complex hierarchical "generate and test" process. The generator
produces building blocks which are combined into schedules. At various points in
the procedure, tests are made that help weed out poor building blocks and promote
the use of good ones. To reduce and support uncertainty management of the search
space, the previous two steps (candidate rules selection and parallel simulation
with statistical analysis) provide partial solutions to the problem of compromise
analysis. Reducing uncertainty makes the search process more effective, with the
complexity of the scheduling problem becoming more manageable in the process
(see Figure 9.5).

9.3.4 Inductive Learning Algorithm — TDKA
Now that this new schedule has been generated, we want to extract the knowledge
contained in that schedule for future use. To do this, we must derive a "new rule"
which can be used to regenerate schedules in the same way that other dispatching
rules like SPT (Shortest Processing Time first) are used. This new rule will not,
however, be a simple dispatching rule. To do this, we will use a technique
developed in (YIH, 1988 and YIH, 1990) called T race- D riven K nowledge
A cquisition (TDKA). TDKA is a method that extracts knowledge from the actual
results of decisions rather than statements or explanations of the presumed effects
of decisions. There are three steps in the process of trace-driven knowledge
acquisition: data collection, data analysis, and rule evaluation.

14

INITIAL
SCHEDULES

OPERATOR 2

OPERATOR NOPERATOR 1

REPRODUCTION
AND

EVALUATION

FINAL
SCHEDULE

FIGURE 9.5 Genetic algorithm for compromise analysis.

In step one, data is collected through simulation, historical records, human inputs
or actual physical experiments. (THESEN et al., 1987 and YIH, 1992) describe
their efforts to use human experts. In this application, the data (trace) is simply
the schedule generated from the Genetic Algorithm. In step two, the schedule is
analyzed to extract a set of production rules (If-Then rules) which could be used to
regenerate the same schedule. In step three, simulation is used to compare the
generated schedule with the original schedule. The process returns to step two to
refine the rules if the comparison is unacceptable.

Class 1

Class 2
Class m

.. .
. . .

State Space
R1

R2

R m

Figure 9.6 State space hyper plane(Rm is the decision rule
applied in class m).

15

The core of the TDKA lies in the step two-data analysis. There are two types of
rules involved — decision rules and class assignment rules. If the state space is
viewed as a hyper plane, class assignment rules draw the boundaries on the hyper
plane to define the areas of classes as shown in Figure 9.6. For each class, a
single production rule is used to determine what to do next. These rules are in the
form of

"If [state ∈∈∈∈ class i] then apply Ri* "

In data analysis, the records collected are used to define classes and to select a
single rule for each class. The rule formation algorithm can be described by three
steps as follows.

I . Initialize
Determine state variables
Determine decision rules
Set initial value for acceptance level (L)
Determine initial class C1
Obtain a trace (a set of records) from simulation

II. Vote
Each record in this class (Ci) votes for all the decision rules that will
result in the same decision as in the record
Summarize the vote results in percentage (No. of votes / No. of records)

III. Form rules
The decision rule (Rk*)with the highest percentage wins.
If the percentage is higher than L, then form the following rule

If [state ∈∈∈∈ Ci] then apply Rk*

else
Split class Ci into two classes based on selected state variable (Vp*)

and threshold (Thi*).

Add two class assignment rules.

IF [state ∈∈∈∈ Ci] and [Vp*<Thi*] THEN [state ∈∈∈∈ Ci1]

IF [state ∈∈∈∈ Ci] and [Vp*≥≥≥≥ Thi*] THEN [state ∈∈∈∈ Ci2]

Repeat Steps II and III for classes Ci1 and Ci2.

IV. Stop

This iterative process will stop whenever the rule formation is completed. That
is, the state space has been properly divided into several classes and a single
production rule is selected for each class. If the performance of the extracted rules
is worse than the trace, then it is necessary to return to data analysis and refine the
rules by increasing the value of acceptance level (L). Otherwise, the process
stops.

16

9.4 An Example
Consider a single machine sequencing problem with 7 types of jobs. Each job-
type has its own arrival time, due date, and processing time distributions. The set-
up time is sequence dependent as shown in Table 9.1. The objective is to
determine a sequence which minimizes the summation of mean flow time and
maximum tardiness. Assume that we are to generate a sequence for the 10 jobs in
the input queue of the machine as described in Table 9.5.

Job # Job Type Mean Processing Time Arrival Time Due Date
1 7 5 154 203
2 3 5 154 193
3 4 3 159 194
4 3 5 160 208
5 2 4 166 194
6 1 4 170 202
7 3 5 185 231
8 2 4 186 221
9 7 5 192 243
10 7 5 200 250

Current Time: 200
Previous Job Type executed: 3

Table 9.5 Job description for the example problem.

The candidate rule selector implemented, using backpropagation neural networks
(previously trained by off-line training), uses the system status and the
performance criteria (mean flow time and maximum tardiness) in order to select a
small set of candidates from the 13 rules available (see Table 9.6). Each neural
network has six inputs (as shown in Figure 9.4), 12 hidden units in the hidden
layer, and 13 outputs (one for each dispatching rule). Each neural network (one for
mean flow time and the other for mean tardiness) in parallel ranks all rules. The
networks developed in the C programming language take on average less than 10
mS (486 PC compatible @ 33 MHz) to give an answer to the problem. The
neural network for mean flow time ranks higher SPST (Shortest Processing and
Shortest Set-upTime first) and SST (Set-up Time first). On the other hand, the
neural network for maximum tardiness ranks higher EDD (Earliest Due Date first)
and mSLACK (Smallest Slack first).

 A genetic algorithm is utilized having as initial populations the selected
schedules and some randomly generated schedules. The fitting function is a
combination of all performance measures with coefficients reflecting the
"importance" of each one according to the imposed criteria. The crossover
mechanism utilized is based on "order Crossover" as developed by Syswerda
(1990). The genetic algorithm takes on average eleven iterations with an average
time of less than 700 mS on a 486 PC @ 33 MHz. The new schedule
compromises both measures with an acceptable degree of success (Mean Flow
Time = 73.5 and Maximum Tardiness = 6). In order to verify the answers, a
program that generates all possible solutions to the scheduling problem is

17

generated (10!), taking on average 2 hours of cpu time of the 486 PC @ 33 MHz.
The "new" schedule generated by the genetic algorithm is superior (based on the
combined performance criteria) to the initial schedules selected by the neural
networks — (see Table 9.6). The output, shown at the bottom of Table 9.6, is (2
3 6 5 1 4 7 8 10 9). This sequence performs better than EDD for maximum
tardiness while maintaining good performance in mean flow time (better than the
third ranked rule-SPT). However, it is possible to identify some of the relative
positions of the dispatching heuristics in the final schedule. This schedule is
selected to be applied to the manufacturing system.

Dispatching
Rule

Mean Flow
Time

Rank Maximum
Tardiness

Rank Job Sequence

SPT 62.4 3 46 7 3 5 6 8 1 2 4 7 9 10
LPT 63.4 5 67 10 1 2 4 7 9 10 5 6 8 3
FIFO 66.0 11 42 5 1 2 3 4 5 6 7 8 9 10
LIFO 64.4 7 73 13 10 9 8 7 6 5 4 3 1 2
SST 59.2 2 61 8 2 4 7 1 9 10 6 5 8 3
LST 66.2 12 40 4 3 1 2 5 4 6 7 8 9 10
SPST 58.5 1 42 6 2 4 7 3 6 5 8 1 9 10
LPST 67.6 13 63 9 1 2 9 4 10 7 3 5 6 8
EDD 63.2 4 31 1 2 3 5 6 1 4 8 7 9 10
LDD 64.8 8 72 11 10 9 7 8 4 1 6 3 5 2
mSLACK 63.4 6 31 2 2 3 5 1 6 4 8 7 9 10
MSLACK 64.8 9 72 12 10 9 7 8 4 1 6 3 5 2
CR 65.7 10 34 3 3 5 2 6 1 4 8 7 9 10

Genetic
Algorithm*

61.7 - 30 - 2 3 6 5 1 4 7 8 10 9

Note:
SPT - Shortest Processing Time LPT - Longest Processing Time
FIFO - First In First Out LIFO - Last In First Out
SST - Shortest Set-up Time LST - Longest Set-up Time
SPST - Shortest Pro and Set-up Time LPST - Longest Proc and Set-up Time
EDD - Earliest Due Date LDD - Latest Due Date
mSLACK - Smallest slack MSLACK - Largest slack
CR - Critical Ratio (slack/processing time)

Table 9.6 Results from commonly used heuristics and genetic
algorithm.

We now show how to use TDKA to generate a new sequencing rule. Using the
GA sequence (2 3 6 5 1 4 7 8 10 9), we first obtain the trace from
simulation in the following format.

(Q, NT, MT, AT, VP, VS) ---> Action where
Q: number of jobs in the queue
NT: number of tardy jobs
MT: maximum tardiness

18

AT: mean tardiness
VP: variance of processing times
VS: variance of set-up times
Action: job identification number to be selected next

For instance, the trace from simulation is:
(10, 4, 10, 7.25, 0.50, 1.17) --> 2
(9, 4, 14, 9.75, 0.53, 1.00) --> 3
(8, 4, 17, 11.3, 0.27, 0.13) --> 6
(7, 3, 14, 13.0, 0.24, 0.24) --> 5
(6, 2, 16, 16.0, 0.17, 0.67) --> 1
(5, 2, 16, 9.5, 0.20, 1.20) --> 4
(4, 1, 8, 8.0, 0.25, 1.00) --> 7
(3, 1, 13, 13.0, 0.33, 0.00) --> 8
(2, 0, 0, 0.0, 0.00, 0.00) -->10

Each record in the trace will vote for the rules that could yield the same decision
as in the sequence. The summary of votes is listed in the following table.

We start with one class, called Class 1. If we are satisfied with the accuracy of
67%, that is 67% is higher than the acceptance level (L), we may arbitrarily
choose SST, SPST, EDD or mSLACK and form the following rule.

"If [state ∈∈∈∈ Class 1] then apply SST" (9.1)

If we would like to obtain higher accuracy, the variable MT (maximum tardiness)
can be used to split Class 1 into two subclasses, Class 11 and Class 12. Class 11
includes the states with MT ≥ 10, and Class 12 has the remainder. The following
class assignment rules will be formed.

Rule Votes %
SPT 5 55%
LPT 5 55%
FIFO 5 55%
LIFO 1 11%
SST 6 67%
LST 5 55%
SPST 6 67%
LPST 3 33%
EDD 6 67%
LDD 1 11%
mSLACK 6 67%
MSLACK 1 11%
CR 5 55%

Number of records = 9

Table 9.7 Summary of the record votes (Class 1).

19

"If [MT ≥≥≥≥ 10] then state ∈∈∈∈ Class 11" (9.2)

"If [MT < 10] then state ∈∈∈∈ Class 12" (9.3)

After splitting into two classes, the voting process repeats within each class. The
results are listed in Tables 9.8 and 9.9 in Appendix 1.

The following rule for Class 12 could be formed with 100% accuracy with LPT,
SST, or SPST.

"If [state ∈∈∈∈ Class 12] then apply SPST" (9.4)

In Class 11, if we are satisfied with the accuracy of 86%, we may form the
following rule with EDD or mSLACK.

"If [state ∈∈∈∈ Class 11] then apply EDD" (9.5)

However, if we would like to achieve higher accuracy, MT is used again to split
Class 11 into Class 111 and Class 112 with threshold of 17. The following rules
are formed.

"If [state ∈∈∈∈ Class 11] and [MT≥≥≥≥17] then state ∈∈∈∈ Class 111"(9.6)

"If [state ∈∈∈∈ Class 11] and [MT<17] then state ∈∈∈∈ Class 112"(9.7)

After splitting, the voting results are summarized in Tables 9.10 and 9.11 in the
Appendix included at the end of this chapter.

Two rules may be formed with 100% accuracy as follows.

"If [state ∈∈∈∈ Class 111] then apply SPT" (9.8)

"If [state ∈∈∈∈ Class 112] then apply EDD" (9.9)

Finally, rules (9.2), (9.3), (9.4), (9.6), (9.7), (9.8), and (9.9) will be included in
the rule base and this set of rules is able to generate sequences based on the
strategy embedded in the sequence derived from the GA.

9.5 Remarks
In this chapter, we have described a methodology to solve sequencing and
scheduling problems which integrate neural networks, simulation, genetic
algorithms, and machine learning techniques. We also described a small example
which demonstrates the methodology. By exploiting the parallel processing and
modeling capabilities of the neural nets, simulation, and genetic algorithms it has
the potential to be extremely fast and highly adaptable to customer needs. Finally,
we described a learning technique which extracts the knowledge from the derived
schedules and creates new rules. This provides the additional capability to

20

 learn what works and what does not work in a variety of situations and utilize
that knowledge at a later time. For these reasons, we believe that this technique
has the potential to solve real-world sequencing and scheduling problems in real-
time.

References
ARIZONO I., YAMAMOTO A., and OHTA, H., "Scheduling for Minimizing Total
Actual Flow Time by Neural Networks," International Journal of Production
Research, 1992, Vol. 30, No. 3, pp. 503-511.

BAGCHI, S., UCKUN, S., MIYABE, Y., and KAWAMURA, K., "Exploring
Problem-Specific Recombination Operators for Job Shop Scheduling,"
Proceedings of the Fourth International Conference on Genetic Algorithms and
Their Applications, pp. 10-17, 1991.

BARTO, A., "Reinforcement Learning and Adaptive Critic Methods," Handbook
of Intelligent Control: Neural, Fuzzy, and Adaptive approaches. D.A. White and
D.A. Sofge (Ed.) Van Nostrand Reinhold Publication, 1992.

CHRYSSOLOURIS, G., LEE, M., and DOMROESE, M., "The Use of Neural
Networks in Determining Operational Policies for Manufacturing Systems,"
Journal of Manufacturing Systems, 10, pp. 166-175, 1991.

DAVIS L., "Job Shop Scheduling with Genetic Algorithms," Proceedings on an
International Conference on Genetic Algorithms and Their Applications,
Carnegie-Mellon University, pp. 136-140, 1985.

DAVIS W. and JONES A., "Issues in real-time simulation for flexible
manufacturing systems", Proceedings of the European Simulation
Multiconference, Rome, Italy, June 7-9, 1989.

DAVIS, W., WANG, H., and HSIEH, C., "Experimental Studies in Real-time,
Monte Carlo Simulation", IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 21, No. 4, pp. 802-814, 1991.

DAVIS W., JONES A., and SALEH A., "A Generic Architecture for Intelligent
Control Systems", Computer Integrated Manufacturing Systems, Vol. 5, No. 2,
pp. 105-113, 1992.

DE JONG, K. and SPEARS, W., "Using Genetic Algorithms to solve NP-
Complete Problems," Proceedings of the Third International Conference on
Genetic Algorithms, pp. 124-132, 1989.

JACKSON, R. and JONES, A., "An Architecture for Decision Making in the
Factory of the Future, INTERFACES, Vol. 17, NO. 6, pp. 15-28, 1987.

21

JONES, A. and SALEH, A., "A Multi-level/Multi-layer Architecture for Intelligent
Shop Floor Control," International Journal of Computer Integrated
Manufacturing Special Issue on Intelligent Control, 3, 1, pp. 60-70, 1990.

FOO Y. and TAKEFUJI Y., "Stochastic Neural Networks for solving job shop
Scheduling", Proceedings of the IEEE international Conference on Neural
Networks, published by IEEE TAB, 1988, pp. II275-II290.

GOLDBERG D., Genetic Algorithms in Machine Learning, Addison-Wesley,
Menlo Park, California, 1988.

GOLDBERG, D., and LINGLE, R., "Alleles, loci, and the Traveling Salesman
Problem," Proceedings of the of the International Conference on Genetic
Algorithms and Their Applications, 1985.

LO, Z. and BAVARIAN, B., "Scheduling with Neural Networks for Flexible
Manufacturing Systems," Proceedings of the 1991 IEEE International Conference
on Robotics and Automation, Sacramento, California, pp. 818-823, 1991.

RABELO, L., "A hybrid artificial neural network and expert system approach to
flexible manufacturing system scheduling", PhD Thesis, University of Missouri-
Rolla, 1990.

RABELO, L, YIH, Y., JONES, A., and WITZGALL, G., "Intelligent FMS
Scheduling using Modular Neural Netwroks", Proceedings of ICNN'93, pp. 1224-
1229, 1993.

RUMELHART, D., McCLELLAND, J., and the PDP Research Group, Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1:
Foundations, Cambridge, MA: MIT Press/Bradford Books, 1988.

SYSWERDA, G., "Scheduling Optimization using Generic Algorithms,"
Handbook of Genetic Algorithms, pp. 332-349, 1990.

WATKINS, C., Learning From Delayed Rewards, PhD Thesis, Cambridge
University, Cambridge, England, 1989.

WERBOS, P., "Approximate Dynamic Programming for Real Time Control
Neural Modelling," Handbook of Intelligent Control: Neural, Fuzzy, and
Adaptive Approaches. White and Sofge (eds.) Van Nostrand Reinhold
Publication, pp. 493-525, 1992.

WHITLEY, D. and STARKWEATHER, T., "GENITOR II: A Distributed
Genetic Algorithm," Journal of Experimental and Theoretical Artificial
Intelligence, Vol. 2, pp. 189-214, 1990.

22

WHITLEY D., STARKWEATHER T., and FUQUAY D., "Scheduling Problems
and the Traveling Salesman: the genetic edge recombination operator,"
Proceedings of the Third International Conference on Genetic Algorithms, pp.
133-140, 1989.

YIH, Y., Trace Driven Knowledge Acquisition for Expert Scheduling System,
Ph.D. dissertation, University of Wisconsin-Madison, December, 1988.

YIH, Y., "Trace-Driven Knowledge Acquisition (TDKA) for Rule-Based Real-
Time Scheduling Systems," Journal of Intelligent Manufacturing, 1, 4, pp. 217-
230, 1990.

YIH, Y., "Learning Real-Time Scheduling Rules from Optimal Policy of Semi-
Markov Decision Processes," International Journal of Computer Integrated
Manufacturing, Vol. 5, No. 3, pp. 171-181, 1992.

ZHOU D., CHERKASSKY V., BALDWIN T., and HONG D., "Scaling Neural
Network for Job Shop Scheduling," Proceedings of the International Conference
on Neural Networks, Vol. 3, pp. 889-894, 1990.

23

APPENDIX

Rule Votes %
SPT 4 57%
LPT 3 43%
FIFO 4 57%
LIFO 0 0%
SST 4 57%
LST 4 57%
SPST 4 57%
LPST 2 29%
EDD 6 86%
LDD 0 0%
mSLACK 6 86%
MSLACK 0 0%
CR 5 71%

Number of records = 7

Table 9.8 Summary of the record votes (Class 11).

Rule Votes %
SPT 1 50%
LPT 2 100%
FIFO 1 50%
LIFO 1 50%
SST 2 100%
LST 1 50%
SPST 2 100%
LPST 1 50%
EDD 0 0%
LDD 1 50%
mSLACK 0 0%
MSLACK 1 50%
CR 0 0%

Number of records = 2

Table 9.9 Summary of the record votes (Class 12).

24

Rule Candidate # of Votes Percentage
SPT 1 100%
LPT 0 0%
FIFO 0 0%
LIFO 0 0%
SST 1 100%
LST 0 0%
SPST 1 100%
LPST 0 0%
EDD 0 0%
LDD 0 0%
mSLACK 0 0%
MSLACK 0 0%
CR 0 0%

Number of records = 1

Table 9.10 Summary of the record votes (Class 111).

Rule Candidate # of Votes Percentage
SPT 4 57%
LPT 3 43%
FIFO 4 57%
LIFO 0 0%
SST 4 57%
LST 4 57%
SPST 4 57%
LPST 2 29%
EDD 6 86%
LDD 0 0%
mSLACK 6 86%
MSLACK 0 0%
CR 5 71%

Number of records = 6

Table 9.11 Summary of the record votes (Class 112).

	Practical Handbook of GENETIC ALGORITHMS: New Frontiers, Volume II
	Table of Contents
	Chapter 9: A Hybrid Approach Using Neural Networks, Simulation, Genetic Algorithms, and Machine Learning for Real-Time Sequencing and Scheduling Problems
	Abstract
	9.1 Introduction
	9.2 Hierarchical Generic Controller
	9.3 Implementing the Optimization Function
	9.3.1 Candidate Rule Selection
	Off-Line Training
	On-Line Training

	9.3.2 Real-Time Simulation
	9.3.3 Genetic Algorithms
	9.3.3.1 Genetic Algorithms and Scheduling
	Example: Using a simple genetic algorithm for sequencing

	9.3.3.2 Genetic Algorithms for Compromise Analysis

	9.3.4 Inductive Learning Algorithm — TDKA

	9.4 An Example
	9.5 Remarks
	References
	APPENDIX

	© 1995 by CRC Press, Inc: © 1995 by CRC Press, Inc.

